Biosynthesis and Antibiofilm Activity of Zinc Oxide Nanoparticles
Downloads
Averrhoa bilimbi fruit extract was used as a reducing and capping agent during the biosynthesis of zinc oxide nanoparticles, with an emphasis on the effects of the in-situ deagglomeration approach on physical attributes and inhibitory activity against Escherichia coli biofilm. The deagglomeration method (ultrasonication vs. PVA), temperature (30, 60 °C), and zinc precursor: extract volumetric ratio (1:2, 2:1) were among the biosynthesis factors. High phase purity crystalline ZnO nanoparticles were produced by calcining biosynthesis precipitates at 375 °C. Hydrodynamic mean particle diameters of 1.0-3.5 µm compared to a mean individual ZnO particle diameter of 22 nm suggested that the final product formed soft agglomerates. Physical deagglomeration was more successful at higher temperatures, but chemical deagglomeration was more effective at lower temperatures, owing to the interaction between the deagglomeration method and biosynthesis temperature. The efficacy of biosynthesized ZnO nanoparticles was demonstrated by an average 61% reduction in E. Coli biofilm population at 50 ppm ZnO dose, which rose to 78% at 200 ppm dose. This activity was improved by lower biosynthesis temperature and precursor:extract ratio, in which higher quantity of residual extract biomolecules were available.
Tiwari, J.N., Tiwari, R.N. & Kim, K.S., Zero-dimensional, One-dimensional, Two-dimensional and Three-dimensional Nanostructured Materials for Advanced Electrochemical Energy Devices, Prog Mater Sci, 57, pp. 724-803, 2012. doi: 10.1016/j.pmatsci.2011.08.003.
Naahidi, S., Jafari, M., Edalat, F., Raymond, K., Khademhosseini, A. & Chen, P., Biocompatibility of Engineered Nanoparticles for Drug Delivery, J Control Release, 166, pp. 182-194, 2013. doi: 10.1016/j.jconrel.2012.12.013.
McNamara, K. & Tofail, S.A.M., Nanoparticles in Biomedical Applications, Adv Phys X, 2, pp. 54-88, 2017. doi: 10.1080/23746149.2016.1254570.
Jiao, M., Zhang, P., Meng, J., Li, Y., Liu, C., Luo, X. & Gao, M., Recent Advancements in Biocompatible Inorganic Nanoparticles Towards Biomedical Applications, Biomater Sci, 6, pp. 726-745, 2018. doi: 10.1039/c7bm01020f.
Nikolova, M.P. & Chavali, M.S., Metal Oxide Nanoparticles as Biomedical Materials, Biomimetics, 5, 5020027, 2020. doi: 10.3390/BIOMIMETICS5020027.
Kielbik, P., Kaszewski, J., Rosowska, J., Wolska, E., Witkowski, B.S., Gralak, M.A., Gajewski, Z., Godlewski, M. & Godlewski, M.M., Biodegradation of the ZnO:Eu Nanoparticles in the Tissues of Adult Mouse after Alimentary Application, Nanomedicine, 13, pp. 843-852, 2017. doi: 10.1016/j.nano.2016.11.002.
Jiang, J., Pi, J. & Cai, J., The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications, Bioinorg Chem Appl, 2018, 1062562, 2018. doi: 10.1155/2018/1062562.
Manojkumar, K., Sivaramakrishna, A. & Vijayakrishna, K., A Short Review on Stable Metal Nanoparticles Using Ionic Liquids, Supported Ionic Liquids, and Poly(Ionic Liquids), J Nanopart Res, 18, pp. 1-22, 2016. doi: 10.1007/s11051-016-3409-y.
Parihar, V., Raja, M. & Paulose, R., A Brief Review of Structural, Electrical and Electrochemical Properties of Zinc Oxide Nanoparticles, Rev Adv Mater Sci, 53, pp. 119-130, 2018. doi: 10.1515/rams-2018-0009.
Mandal, A.K., Katuwal, S., Tettey, F., Gupta, A., Bhattarai, S., Jaisi, S., Bhandari, D.P., Shah, A.K., Bhattarai, N. & Parajuli, N., Current Research on Zinc Oxide Nanoparticles: Synthesis, Characterization, and Biomedical Applications, Nanomaterials, 12, 3066, 2022. doi: 10.3390/nano12173066.
Reda, A.T., Park, J.Y. & Park, Y.T., Zinc Oxide-based Nanomaterials for Microbiostatic Activities: A Review, J Funct Biomater, 15, 103, 2024. doi: 10.3390/jfb15040103.
Krishnamoorthy, R., Athinarayanan, J., Periyasamy, V.S., Alshuniaber, M.A., Alshammari, G., Hakeem, M.J., Ahmed, M.A. & Alshatwi, A.A., Antibacterial Mechanisms of Zinc Oxide Nanoparticle against Bacterial Food Pathogens Resistant to Beta-lactam Antibiotics, Molecules, 27, 2489 pp. 1-17, 2022. doi: 10.3390/molecules27082489
Siddiqi, K.S., ur Rahman, A., Tajuddin & Husen, A., Properties of Zinc Oxide Nanoparticles and Their Activity Against Microbes, Nanoscale Res Lett, 13, 141, 2018. doi: 10.1186/s11671-018-2532-3.
Wang, L., Hu, C. & Shao, L., The Antimicrobial Activity of Nanoparticles: Present Situation and Prospects for the Future, Int J Nanomedicine, 12, pp. 1227-1249, 2017. doi: 10.2147/IJN.S121956.
Raghunath, A. & Perumal, E., Metal Oxide Nanoparticles as Antimicrobial Agents: A Promise for the Future, Int J Antimicrob Agents, 49, pp. 137–152, 2017. doi: 10.1016/j.ijantimicag.2016.11.011.
Wang, Y., Liu, J., Wang, T., Liu, L.Z., Tian, C., Cui, Y., Shao, W., Hua, X., Shi, Y. & Wang, Y., Antibacterial Properties and Mechanism of Nanometer Zinc Oxide Composites, Food Packag Shelf Life, 40, 101167, 2023. doi: 10.1016/j.fpsl.2023.101167.
Sajjad, S., Leghari, S.A.K., Ryma, N.A. & Farooqi, S.A., Green Synthesis of Metal-based Nanoparticles and Their Applications, Green Metal Nanoparticles: Synthesis, Characterization, and Their Applications, edited by Kanchi, S. & Ahmed, S., Hoboken: Wiley, pp. 23-54, 2018. doi: 10.1002/9781119418900.ch2.
Rahayu, E., Wonoputri, V. & Samadhi, T.W., Plant Extract-assisted Biosynthesis of Zinc Oxide Nanoparticles and Their Antibacterial Application, IOP Conf Ser Mater Sci Eng, 823, 012036, 2020. doi: 10.1088/1757-899X/823/1/012036.
Rasool, A., Kanagaraj, T., Mir, M.I., Zulfajri, M., Ponnusamy, V.K. & Mahboob, M., Green Coalescence of CuO Nanospheres for Efficient Anti-microbial and Anti-cancer Conceivable Activity, Biochem Eng J, 187, 108464, 2022. doi: 10.1016/j.bej.2022.108464.
Wonoputri, V., Wijaya, J., Primayudha, V.A., Khairunnisa, S. & Samadhi, T.W., Performance of Antimicrobial ZnO Nanoparticle Synthesized by Biological Method: Literature Review, AIP Conf Proc, 2667, 050007, 2023. doi: 10.1063/5.0118678.
Al-darwesh, M.Y., Ibrahim, S.S. & Mohammed, M.A., A Review on Plant Extract Mediated Green Synthesis of Zinc Oxide Nanoparticles and Their Biomedical Applications, Results Chem, 7, 101368, 2024, doi: 10.1016/j.rechem.2024.101368.
Suluvoy, J.K. & Berlin Grace, V.M., Phytochemical Profile and Free Radical Nitric Oxide (NO) Scavenging Activity of Averrhoa Bilimbi L. Fruit Extract, 3 Biotech, 7, 85, 2017. doi: 10.1007/s13205-017-0678-9.
Rahman, M.M., Habib, M.R., Hasan, M.A., Amin, M.Al, Saha, A. & Mannan, A., Comparative Assessment on in Vitro Antioxidant Activities of Ethanol Extracts of Averrhoa Bilimbi, Gymnema Sylvestre and Capsicum Frutescens, Pharmacognosy Res, 6, pp. 36-41, 2014. doi: 10.1007/s00289-017-2025-z.
Utami, S., Endrini, S., Nafik, S., Lestari, I.M.T., Anindya, D., Bakar, E.A., Rozy, F., Said, F.F., Afifah, E., Arumwardana, S., Nufus, H., Rihibiha, D.D., Kusuma, H.S.W., Wibowo, S.H.B. & Widowati, W., In Vitro Antioxidant and Anti-obesity Activities of Freeze-dried Canarium Sp., Averrhoa Bilimbi L. and Malus Domestica, Indones Biomed J, 11, pp. 320-326, 2019. doi: 10.18585/inabj.v11i3.728.
Yan, S.W., Ramasamy, R., Alitheen, N.B.M. & Rahmat, A., A Comparative Assessment of Nutritional Composition, Total Phenolic, Total Flavonoid, Antioxidant Capacity, and Antioxidant Vitamins of Two Types of Malaysian Underutilized Fruits (Averrhoa bilimbi and Averrhoa carambola), Int J Food Prop, 16, pp. 1231-1244, 2013. doi: 10.1080/10942912.2011.582975.
Khairunnisa, S., Wonoputri, V. & Samadhi, T.W., Effective Deagglomeration in Biosynthesized Nanoparticles: A Mini Review, IOP Conf Ser Mater Sci Eng, 1143, 012006, 2021. doi: 10.1088/1757-899x/1143/1/012006.
Liu, Y.S., Chang, Y.C. & Chen, H.H., Silver Nanoparticle Biosynthesis by Using Phenolic Acids in Rice Husk Extract as Reducing Agents and Dispersants, J Food Drug Anal, 26, pp. 649-656, 2018. doi: 10.1016/j.jfda.2017.07.005.
Cao, X., Zhu, L., Bai, Y., Li, F. & Yu, X., Green One-step Synthesis of Silver Nanoparticles and Their Biosafety and Antibacterial Properties, Green Chem Lett Rev, 15, pp. 28-34, 2022. doi: 10.1080/17518253.2021.2018506.
Aminuzzaman, M., Ying, L.P., Goh, W.S. & Watanabe, A., Green Synthesis of Zinc Oxide Nanoparticles Using Aqueous Extract of Garcinia Mangostana Fruit Pericarp and Their Photocatalytic Activity, B Mater Sci, 41, 50, 2018. doi: 10.1007/s12034-018-1568-4.
Shanavas, S., Priyadharsan, A., Karthikeyan, S., Dharmaboopathi, K., Ragavan, I., Vidya, C., Acevedo, R. & Anbarasana, P.M., Green Synthesis of Titanium Dioxide Nanoparticles Using Phyllanthus Niruri Leaf Extract and Study on Its Structural, Optical and Morphological Properties, Mater Today Proc, 26, pp. 3531-3534, 2019. doi: 10.1016/j.matpr.2019.06.715.
Abdullah, J.A.A., Salah Eddine, L., Abderrhmane, B., Alonso-González, M., Guerrero, A. & Romero, A., Green Synthesis and Characterization of Iron Oxide Nanoparticles by Pheonix Dactylifera Leaf Extract and Evaluation of Their Antioxidant Activity, Sustain Chem Pharm, 17, 100280, 2020. doi: 10.1016/j.scp.2020.100280.
Droepenu, E.K., Asare, E.A., Wee, B.S., Wahi, R.B., Ayertey, F. & Kyene, M.O., Biosynthesis, Characterization, and Antibacterial Activity of ZnO Nanoaggregates Using Aqueous Extract from Anacardium Occidentale Leaf: Comparative Study of Different Precursors, Beni Suef Univ J Basic Appl Sci, 10, pp. 1-10, 2021.
Rokbani, H., Daigle, F. & Ajji, A., Combined Effect of Ultrasound Stimulations and Autoclaving on the Enhancement of Antibacterial Activity of ZnO and SiO2/ZnO Nanoparticles, Nanomaterials, 8, 129, 2018. doi: 10.3390/nano8030129.
Pradhan, S., Hedberg, J., Blomberg, E., Wold, S. & Odnevall Wallinder, I., Effect of Sonication on Particle Dispersion, Administered Dose and Metal Release of Non-functionalized, Non-inert Metal Nanoparticles, J Nanopart Res, 18, pp. 1-14, 2016. doi: 10.1007/s11051-016-3597-5.
Hartmann, N.B., Jensen, K.A., Baun, A., Rasmussen, K., Rauscher, H., Tantra, R., Cupi, D., Gilliland, D., Pianella, F. & Riego Sintes, J.M., Techniques and Protocols for Dispersing Nanoparticle Powders in Aqueous Media - Is There a Rationale for Harmonization?, J Toxicol Environ Health B Crit Rev, 18, pp. 1-28, 2015. doi: 10.1080/10937404.2015.1074969.
Othman, S.H., Abdul Rashid, S., Mohd Ghazi, T.I. & Abdullah, N., Dispersion and Stabilization of Photocatalytic TiO2 Nanoparticles in Aqueous Suspension for Coatings Applications, J Nanomater, 2012, 71812, 2012. doi: 10.1155/2012/718214.
Thonglerth, P., Sujaridworakun, P. & Boondamnoen, O., Preparation of ZnO Nanoparticles Water-based Dispersion, J Phys Conf Ser, 2175, 012029, 2022. doi: 10.1088/1742-6596/2175/1/012029.
Tuok, L.P., Elkady, M., Zkria, A., Yoshitake, T. & Nour Eldemerdash, U., Evaluation of Stability and Functionality of Zinc Oxide Nanofluids for Enhanced Oil Recovery, Micro Nano Syst Lett, 11, 12, 2023. doi: 10.1186/s40486-023-00180-z.
Mayedwa, N., Khalil, A.T., Mongwaketsi, N., Matinise, N., Shinwari, Z.K. & Maaza, M., The Study of Structural, Physical and Electrochemical Activity of Zno Nanoparticles Synthesized by Green Natural Extracts of Sageretia Thea, Nano Research & Applications, 3, 9, 2017. doi: 10.21767/2471-9838.100026.
Pallela, P.N.V.K., Ruddaraju, L.K., Veerla, S.C., Matangi, R., Kollu, P., Ummey, S. & Pammi, S.V.N., Synergetic Antibacterial Potential, Dye Degrading Capability and Biocompatibility of Asperagus Racemosus Root Assisted ZnO Nanoparticles, Mater Today Commun, 25(February), 101574, 2020. doi: 10.1016/j.mtcomm.2020.101574.
Rakgotho, T., Ndou, N., Mulaudzi, T., Iwuoha, E., Mayedwa, N. & Ajayi, R.F., Green-synthesized Zinc Oxide Nanoparticles Mitigate Salt Stress in Sorghum Bicolor, Agriculture, 12, 597, 2022. doi: 10.3390/agriculture12050597.
Yadav, M.S., Singh, N. & Bobade, S.M., Zinc Oxide Nanoparticles and Activated Charcoal-based Nanocomposite Electrode for Supercapacitor Application, Ionics (Kiel), 24, pp. 3611-3630, 2018. doi: 10.1007/s11581-018-2527-1.
Wonoputri, V., Gunawan, C., Liu, S., Barraud, N., Yee, L.H., Lim, M. & Amal, R., Ferrous Ion as a Reducing Agent in the Generation of Antibiofilm Nitric Oxide from a Copper-based Catalytic System, Nitric Oxide, 75, pp. 8-15, 2018. doi: 10.1016/j.niox.2018.01.005.
O’Toole, G.A., Microtiter Dish Biofilm Formation Assay, J Vis Exp, 47, 2437, 2011. doi: 10.3791/2437.
Malucelli, L.C., Massulo, T., Magalhães, W.L.E., Stofella, N.C.F., Vasconcelos, E.C., Filho, M.A.S.C. & Murakami, F.S., Thermal and Chemical Characterization of Dicksonia Sellowiana Extract by Means of Thermal Analysis, Rev Bras Farmacogn, 28, pp. 626-630, 2018. doi: 10.1016/j.bjp.2018.07.001.
Yeap, S.P., Permanent Agglomerates in Powdered Nanoparticles: Formation and Future Prospects, Powder Technol, 323, pp. 51-59, 2018. doi: 10.1016/j.powtec.2017.09.042.
Skandalis, N., Dimopoulou, A., Georgopoulou, A., Gallios, N., Papadopoulos, D., Tsipas, D., Theologidis, I., Michailidis, N. & Chatzinikolaidou, M., The Effect of Silver Nanoparticles Size, Produced Using Plant Extract from Arbutus Unedo on Their Antibacterial Efficacy, Nanomaterials, 7, 178. 2017.doi: 10.3390/nano7070178.
Tran, Q.M.T., Nguyen, H.A.T., Doan, V.D., Tran, Q.H. & Nguyen, V.C., Biosynthesis of Zinc Oxide Nanoparticles Using Aqueous Piper Betle Leaf Extract and Its Application in Surgical Sutures, J Nanomater, 2021, 8833864, 2021. doi: 10.1155/2021/8833864.
Wiśniewska, M., Ostolska, I., Szewczuk-Karpisz, K., Chibowski, S., Terpiłowski, K., Gun’ko, V.M. & Zarko, V.I., Investigation of the Polyvinyl Alcohol Stabilization Mechanism and Adsorption Properties on the Surface of Ternary Mixed Nanooxide AST 50 (Al2O3–SiO2–TiO2), Journal of Nanoparticle Research, 17, 12, 2015. doi: 10.1007/s11051-014-2831-2.
Alias, S.S., Ismail, A.B. & Mohamad, A.A., Effect of pH on ZnO Nanoparticle Properties Synthesized by Sol-gel Centrifugation, J Alloys Compd, 499, pp. 231-237, 2010. doi: 10.1016/j.jallcom.2010.03.174.
Wiśniewska, M., Temperature Effects on the Adsorption of Polyvinyl Alcohol on Silica, Central European Journal of Chemistry, 10, pp. 1236-1244, 2012. doi: 10.2478/s11532-012-0044-z.
Eftekhari, A., Ahmadian, E., Panahi-Azar, V., Hosseini, H., Tabibiazar, M. & Maleki Dizaj, S., Hepatoprotective and Free Radical Scavenging Actions of Quercetin Nanoparticles on Aflatoxin B1-Induced Liver Damage: In Vitro/in Vivo Studies, Artif Cells Nanomed Biotechnol, 46, pp. 411-420, 2018. doi: 10.1080/21691401.2017.1315427.
Husain, F.M., Qais, F.A., Ahmad, I., Hakeem, M.J., Baig, M.H., Khan, J.M. & Al-Shabib, N.A., Biosynthesized Zinc Oxide Nanoparticles Disrupt Established Biofilms of Pathogenic Bacteria, Appl Sci, 12, 710, 2022. doi: 10.3390/app12020710.
Doğan, S.Ş. & Kocabaş, A., Green Synthesis of ZnO Nanoparticles with Veronica Multifida and Their Antibiofilm Activity, Hum Exp Toxicol, 39, pp. 319-327, 2020. doi: 10.1177/0960327119888270.
Mohammadi, F.M. & Ghasemi, N., Influence of Temperature and Concentration on Biosynthesis and Characterization of Zinc Oxide Nanoparticles Using Cherry Extract, J Nanostructure Chem, 8, pp. 93-102, 2018. doi: 10.1007/s40097-018-0257-6.
Basri, H.H., Talib, R.A., Sukor, R., Othman, S.H. & Ariffin, H., Effect of Synthesis Temperature on the Size of ZnO Nanoparticles Derived from Pineapple Peel Extract and Antibacterial Activity of ZnO-starch Nanocomposite Films, Nanomaterials, 10, 1061, 2020. doi: 10.3390/nano10061061.
Deshmukh, A.R., Gupta, A. & Kim, B.S., 2019, Ultrasound Assisted Green Synthesis of Silver and Iron Oxide Nanoparticles Using Fenugreek Seed Extract and Their Enhanced Antibacterial and Antioxidant Activities, Biomed Res Int, 2019, 1714358, 2019. doi: 10.1155/2019/1714358.
Copyright (c) 2024 Journal of Engineering and Technological Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.