Optimization of Ultrasonic and Microbubble Disinfection for Escherichia coli and Staphylococcus aureus: Experimental Design and Effectiveness Evaluation
Downloads
This study investigated the synergistic application of ultrasonic (UL) and microbubble (MB) technologies for the disinfection of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Optimal conditions for both techniques were determined through a comprehensive experimental design, resulting in an effective disinfection rate of 100% as assessed by the ten-fold dilution spread plate count method. The study evaluated three key parameters of the UL/MB system, i.e., UL duration time, MB duration time, and gas flow rate within the ranges of 30-60 sec, 30-60 sec, and 15-30 ml/min, respectively. A 2k full factorial design with three replications, five center points, and blocking was employed for robust statistical analysis. Based on the empirical data and rigorous statistical examination, the optimal conditions for achieving sterilization of E. coli and S. aureus were determined as 30 sec UL duration, 30 sec MB duration, and 30 ml/min gas flow rate; and 60 sec UL duration, 60 sec MB duration, and 15 ml/min gas flow rate, respectively. Utilizing these optimal conditions, the disinfection efficacy was assessed, revealing an inhibition rate of 54% for E. coli and an inhibition rate of 19% for S. aureus, with consistent improvement observed across the three replication trials. These findings underscore the potential of UL/MB technology as an effective disinfection strategy against common bacterial pathogens
Maragoni-Santos, C., Serrano Pinheiro de Souza, T., Matheus, J.R.V., de Brito Nogueira, T.B., Xavier-Santos, D., Miyahira, R.F., Antunes, A.E.C. & Fai, A.E.C., COVID-19 Pandemic Sheds Light on the Importance of Food Safety Practices: Risks, Global Recommendations, and Perspectives, Critical Reviews in Food Science and Nutrition, 62, pp. 5569-5581, 2022. doi: 10.1080/10408398.2021.1887078
Ceniti, C., Tilocca, B., Britti, D., Santoro, A. & Costanzo, N., Food Safety Concerns in “COVID-19 Era”, Microbiology Research, 12, pp. 53-68, 2021. doi: 10.3390/microbiolres12010006
Amit, S.K., Uddin, M.M., Rahman, R., Islam, S.R. & Khan, M.S., A Review on Mechanisms and Commercial Aspects of Food Preservation and Processing, Agriculture & Food Security, 6, pp.1-22, 2017. doi: 10.1186/s40066-017-0130-8
Gómez, I., Janardhanan, R., Ibañez, F.C. & Beriain, M.J. The Effects of Processing and Preservation Technologies on Meat Quality: Sensory and Nutritional Aspects, Foods, 9, 1416, 2020. doi: 10.3390/foods9101416
Waghmare, R., Kumar, M., Yadav, R., Mhatre, P., Sonawane, S., Sharma, S., Gat, Y., Chandran, D., Radha, R., Hasan, M., Dey, A., Sarkar, T., Banwo, K., Alao, M., Balakrishnan, J., Suryawanshi, D. & Lorenzo, J.M. Application of Ultrasonication as Pre-Treatment for Freeze Drying: An Innovative Approach for the Retention of Nutraceutical Quality in Foods, Food Chemistry, 404, 134571, 2023. doi: 10.1016/j.foodchem.2022.134571
Gouda, M., Ghazzawy, H.S., Alqahtani, N. & Li, X., The Recent Development of Acoustic Sensors as Effective Chemical Detecting Tools for Biological Cells and Their Bioactivities, Molecules, 28, 4855. 2023. doi:10.3390/molecules28124855.
Zhou, C., Okonkwo, C.E., Inyinbor, A.A., Yagoub, A.E.A. & Olaniran, A.F. Ultrasound, Infrared and Its Assisted Technology, A Promising Tool in Physical Food Processing: A Review of Recent Developments, Critical Reviews in Food Science and Nutrition, 63, pp. 1587-1611, 2023. doi: 10.1080/10408398.2021.1966379.
Ye, L., Zhu, X. & Liu, Y., Numerical Study on Dual-Frequency Ultrasonic Enhancing Cavitation Effect Based on Bubble Dynamic Evolution, Ultrasonics Sonochemistry, 59, 104744, 2019. doi: 10.1016/j.ultsonch.2019.104744.
Wang, M., Lei, Y. & Zhou, Y., High-Intensity Focused Ultrasound (HIFU) Ablation by the Frequency Chirps: Enhanced Thermal Field and Cavitation at the Focus, Ultrasonics, 91, pp. 134-149, 2019. doi: 10.1016/j.ultras.2018.08.017.
Nair, S.S., Pinedo-Cuenca, R., Stubbs, T., Davis, S.J., Ganesan, P.B. & Hamad, F., Contemporary Application of Microbubble Technology in Water Treatment, Water Science & Technology, 86, pp. 2138-2156, 2022. doi: 10.2166/wst.2022.328.
Stride, E. & Edirisinghe, M., Novel Microbubble Preparation Technologies, Soft Matter, 4, pp.2350-2359, 2008. doi: 10.1039/B809517P.
Gao, Y., Francis, K., & Zhang, X., Review on Formation of Cold Plasma Activated Water (PAW) and the Applications in Food and Agriculture, Food Research International, 157, 111246. 2022. doi: 10.1016/j.foodres.2022.111246.
Yang, D.Z., Zhou, X.F., Liang, J.P., Xu, Q.N., Wang, H. L., Yang, K., Wang, B. & Wang, W.C., Degradation of Methylene Blue in Liquid Using High-Voltage Pulsed Discharge Plasma Synergizing Iron-Based Catalyst-Activated Persulfate, Journal of Physics D: Applied Physics, 54, 244002, 2021. doi: 10.1088/1361-6463/abecb1.
Pandis, P. K., Kalogirou, C., Kanellou, E., Vaitsis, C., Savvidou, M. G., Sourkouni, G., Zorpas, A.A. & Argirusis, C., Key Points of Advanced Oxidation Processes (Aops) for Wastewater, Organic Pollutants and Pharmaceutical Waste Treatment: A Mini Review, ChemEngineering, 6, 8, 2022. doi: 10.3390/chemengineering6010008.
Mondal, S.K., Saha, A.K. & Sinha, A., Removal of Ciprofloxacin Using Modified Advanced Oxidation Processes: Kinetics, Pathways and Process Optimization, Journal of Cleaner Production, 171, pp.1203-1214, 2018. doi: 10.1016/j.jclepro.2017.10.091.
Jiang, Y., Hou, X., Zhao, X., Jing, J. & Sun, L., Tracking Adoptive Natural Killer Cells via Ultrasound Imaging Assisted with Nanobubbles, Acta Biomaterialia, 169, pp.542-555, 2023. doi: 10.1016/j.actbio.2023.07.058.
Zhou, S., Nazari, S., Hassanzadeh, A., Bu, X., Ni, C., Peng, Y., Xie, G. & He, Y. The Effect of Preparation Time and Aeration Rate on the Properties of Bulk Micro-Nanobubble Water Using Hydrodynamic Cavitation, Ultrasonics Sonochemistry, 84, 105965, 2022. doi: 10.1016/j.ultsonch.2022.105965.
Sakr, M., Mohamed, M.M., Maraqa, M.A., Hamouda, M.A., Hassan, A A., Ali, J. & Jung, J., A Critical Review of the Recent Developments in Micro–Nano Bubbles Applications for Domestic and Industrial Wastewater Treatment. Alexandria Engineering Journal, 61, pp.6591-6612, 2022. doi: 10.1016/j.aej.2021.11.041.
Gates, F.L., A Method of Standardizing Bacterial Suspensions. The Journal of Experimental Medicine, 31, pp.105-114, 1920. doi: 10.1084/jem.31.1.105.
Yu, Y., Mahmud, M., Vyas, N., Smith, W.R., Wang, Q. & Walmsley, A.D., Cavitation in a Periodontal Pocket by an Ultrasonic Dental Scaler: A Numerical Investigation, Ultrasonics Sonochemistry, 90, 106178, 2022. doi: 10.1016/j.ultsonch.2022.106178.
Massima Mouele, E.S., Tijani, J.O., Badmus, K.O., Pereao, O., Babajide, O., Zhang, C., Shao, T., Sosnin, E., Tarasenko, V., Fatoba, O.O., Laatikainen, K. & Petrik, L.F., Removal of Pharmaceutical Residues from Water and Wastewater Using Dielectric Barrier Discharge Methods—A Review, International Journal of Environmental Research and Public Health, 18, 1683, 2021. doi: 10.3390/ijerph18041683.
Deng, X., Lv, B., Cheng, G. & Lu, Y., Mechanism of Micro/Nano-Bubble Formation and Cavitation Effect on Bubbles Size Distribution in Flotation, Physicochemical Problems of Mineral Processing, 56(3), pp. 504-512, 2020. doi: 10.37190/ppmp/119883.
Otto, C., Zahn, S., Rost, F., Zahn, P., Jaros, D. & Rohm, H., Physical Methods for Cleaning and Disinfection of Surfaces, Food Engineering Reviews, 3, pp. 171-188, 2011. doi: 10.1007/s12393-011-9038-4.
Nakonechny, F. & Nisnevitch, M., Different Aspects of Using Ultrasound to Combat Microorganisms. Advanced Functional Materials, 31, 2011042, 2021. doi: 10.1002/adfm.202011042.
Islam, M.N., Zhang, M. & Adhikari, B., The Inactivation of Enzymes by Ultrasound—A Review of Potential Mechanisms, Food Reviews International, 30, pp. 1-21, 2014. doi: 10.1080/87559129.2013.853772.
Fetyan, N.A. & Salem Attia, T.M., Water Purification Using Ultrasound Waves: Application and Challenges. Arab Journal of Basic and Applied Sciences, 27, pp. 194-207. 2020. doi: 10.1080/25765299.2020.1762294.
Patel, A.K., Singhania, R.R., Chen, C.W., Tseng, Y.S., Kuo, C.H., Wu, C.H. & Di Dong, C. Advances in Micro-and Nano Bubbles Technology for Application in Biochemical Processes, Environmental Technology & Innovation, 23, 101729, 2021. doi: 10.1016/j.eti.2021.101729.
Babu, K.S. & Amamcharla, J.K., Generation Methods, Stability, Detection Techniques, And Applications of Bulk Nanobubbles in Agro-Food Industries: A Review and Future Perspective. Critical Reviews in Food Science and Nutrition, 63, pp.9262-9281, 2023. doi: 10.1080/10408398.2022.2067119.
Postema, M., Van Wamel, A., Lancée, C.T. & De Jong, N. Ultrasound-Induced Encapsulated Microbubble Phenomena, Ultrasound in Medicine & Biology, 30, pp. 827-840, 2004. doi: 10.1016/j.ultrasmedbio.2004.02.010.
Koda, R. & Mukai, T., Bubble Cavitation Generation Near Blood Vessel Walls Using Amplitude-Modulated Wave Irradiation. Japanese Journal of Applied Physics, 62, SJ1030, 2023. doi: 10.35848/1347-4065/acbd5c.
Lauterborn, W. & Mettin, R., Acoustic Cavitation: Bubble Dynamics in High-Power Ultrasonic Fields, in Power Ultrasonics, pp. 23-52, 2023. doi: 10.1016/B978-0-12-820254-8.00005-1.
Jiang, Q., Zhang, M. & Xu, B., Application of Ultrasonic Technology in Postharvested Fruits and Vegetables Storage: A Review, Ultrasonics Sonochemistry, 69, 105261. 2020. doi: 10.1016/j.ultsonch.2020.105261.
Tran, N.L.H., Lam, T.Q., Duong, P.V.Q., Doan, L.H., Vu, M.P., Nguyen, K.H.P. & Nguyen, K.T. Review on the Significant Interactions Between Ultrafine Gas Bubbles and Biological System, Langmuir, 40, pp.984-996, 2024. doi: 10.1021/acs.langmuir.3c03223.
Dai, J., Bai, M., Li, C., Cui, H. & Lin, L., Advances in the Mechanism of Different Antibacterial Strategies Based on Ultrasound Technique for Controlling Bacterial Contamination in Food Industry, Trends in Food Science & Technology, 105, pp.211-222, 2020. doi: 10.1016/j.tifs.2020.09.016.
Yu, H., Chen, S., & Cao, P., Synergistic Bactericidal Effects and Mechanisms of Low Intensity Ultrasound and Antibiotics Against Bacteria: A Review. Ultrasonics sonochemistry, 19, pp.377-382, 2012. doi: 10.1016/j.ultsonch.2011.11.010.
Kaavya, R., Pandiselvam, R., Abdullah, S., Sruthi, N.U., Jayanath, Y., Ashokkumar, C., Khanashyam, A.C., Kothakota, A. & Ramesh, S.V., Emerging Non-Thermal Technologies for Decontamination of Salmonella in Food, Trends in Food Science & Technology, 112, pp.400-418, 2021. doi: 10.1016/j.tifs.2021.04.011.
Gao, Y., Li, M., Sun, C. & Zhang, X., Microbubble-Enhanced Water Activation by Cold Plasma, Chemical Engineering Journal, 446, 137318, 2022. doi: 10.1016/j.cej.2022.137318.
Pongprasert, N., Srilaong, V. & Sugaya, S., An Alternative Technique Using Ethylene Micro-Bubble Technology to Accelerate the Ripening of Banana Fruit, Scientia Horticulturae, 272, 109566, 2020. doi: 10.1016/j.scienta.2020.109566.
Zhang, J., Su, P., Chen, H., Qiao, M., Yang, B. & Zhao, X., Impact of Reactive Oxygen Species on Cell Activity and Structural Integrity of Gram-Positive and Gram-Negative Bacteria in Electrochemical Disinfection System. Chemical Engineering Journal, 451, 138879, 2023. doi: 10.1016/j.cej.2022.138879.
McFarland, J., The Nephelometer: An Instrument for Estimating the Number of Bacteria in Suspensions Used for Calculating the Opsonic Index and for Vaccines, Journal of the American Medical Association, 49(14), pp. 1176-1178, 1907.
Copyright (c) 2024 Journal of Engineering and Technological Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.