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Abstract 

This study presents the application of an improved self-organizing migration algorithm (ISOMA) for minimizing the total 
electricity production expenditure (TEPE) and maximizing the total electricity sale profit (TPRF) for hydrothermal power 
systems (HTPS) without and with renewable energies. Two power system configurations were employed to test the real 
efficiency of ISOMA while dealing with two objective functions. In the first configuration, there was one thermal power plant 
and one hydropower plant, while in the second configuration, wind and solar energy were both connected to the first system. 
The results achieved in the first configuration with the first objective function indicated that ISOMA not only outperformed 
SOMA according to all comparison criteria but was also superior to other methods such as evolutionary programming (EP), 
acceleration factor-based particle swarm optimization (AFPSO), and accelerated particle swarm optimization (APSO). The 
evaluation of the results achieved by ISOMA in the second configuration with the objective function of maximizing the TPRF 
revealed that ISOMA could reach better profits than SOMA in terms of maximum, mean and minimum TPRF values over fifty 
trial runs. As a result, it was concluded that pumped storage hydropower plants are very useful in integrating with renewable 
power plants to cut total cost for thermal power plants and in reaching the highest profit for the whole system. Also, ISOMA 
is a suitable algorithm for the considered problem.  

Keywords: hydrothermal power system; optimal schedule; self-organizing migration algorithm; solar energy; 
total profit; wind energy. 

 

Introduction 

An optimal schedule of hydrothermal power systems (HTPSs) determines the power generation of both thermal 
power plants (TMPs) and hydroelectric power plants (HDPs) that need to meet load demand at every subperiod 
in the entire scheduled operation [1-3]. Alongside that, the minimization of the total electricity production 
expenditure (TEPE) of TMP is also considered. At the same time, the TEPE of HDPs can be abandoned because 
the operation of these HDPs uses water from rivers that is almost free [4, 5]. Depending on the time length, the 
optimal scheduling problem (OS) is separated into three categories: short-term [6-12], medium-term [13, 14], 
and long-term [15, 16]. Recently, the consideration of the short term is more popular than the two others. 
Specifically, in short-term problems with a fixed head model, the power generation of HDP is modeled by the 
released function, as published in [10-11]. As varying head models are taken into account, a hydro generation 
function with respect to reservoir volume and discharge is used [17-20]. Clearly, the hydrothermal system 
scheduling problem is very important for power systems, and this topic has been widely discussed so 
far. However, the energy storage in the system is not highly significant due to the characteristics of hydropower 
plants. Thus, this study considered special hydroelectric power plants, called pumped storage hydroelectric 
power plants (PSHDPs) as an effective solution to reach the minimum TEPE. 
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The basic notion of a typical HTPS includes one TMP and one HDP, in which the generating mode is the sole 

operation mode. However, in the modified version, the pumped storage hydroelectric power plant (PSHDP) is 
introduced with two operation modes, i.e., a generating mode and a pumping mode. The main idea of using a 

PSHDP is to minimize the TEPE of a TMP during several periods in the schedule. This means that at peak load 
demand periods, the TMP must increase its power generation, increasing the TEPE. In these 

circumstances, the PSHDP releases water from the reservoir through the hydro turbines to generate electricity 
and decrease the pressure on the TMP. In contrast, when load demand is low, the abandoned power is used to 
run the pumping mode in the PSHDP to pump water back to the reservoir.  

The study reported in [21] was one of the first to evaluate the contribution of the PSHDP to the HTPS. Specifically, 
the study proposed the former notion of a HTPS with one HDP, one PSHDP, and one TMD. Then, the authors 
applied the gradient method to find the best generation schedule for all plants. The key contribution of the study 

was to indicate that the applied method can satisfy all the related constraints of these power plants, especially 

the constraints of a PSHDP.  

In [22], the authors introduced another method to solve the OS problem, called two-phase computation (TCP), 
to assist in the selection between generating mode and pumping mode. According to the results reported by the 
authors, TCP proved to be an effective method to deal with the problem, with the main objective function of 
reducing the TEPE of the TMP over 24 hours. However, the specification of the applied system was not clearly 
shown.  

The methods mentioned in [21, 22] are classical computing methods, which have several shortcomings: a slow 
response, requiring many complex calculations, being unable to reach the optimal solution, being unable to deal 
with all constraints of large systems with a high number of control variables, etc. Being aware of the weaknesses 
of the classical methods, researchers have applied meta-heuristic methods with several advantages, such as 
ease of application, a quick response, not requiring much computation, and feasible to reach optimal solutions 
for problems with a large search space. The application of the meta-heuristic algorithms can be divided into two 
groups. In the first group, the authors applied the original version of the algorithm, while the researchers in the 
second group applied the algorithms with different modifications to the update mechanism to improve the 
efficiency of the modified algorithm over the original one.  

Typical applications of the improved version of the original meta-heuristic algorithms can be found in studies 
[23-25]. Specifically, in [23], static and dynamic parameters were added to enhance the efficiency of PSO’s 
search process. In [24, 25], the authors added three random factors in the position update model of the 
accelerated particle swarm optimization (APSO) to boost the ability to reach the global solution. In [26], the 
authors also proposed an improved version of the differential evolution algorithm (DE), called the Phase-Based 
Adaptive Differential Evolution algorithm (PBA-DE). Meanwhile, the application of the original version of the 
meta-heuristic methods is also very popular. This implementation can be found in studies [27, 28], using 
evolutionary programming (EP). 

Most of the above-mentioned studies commonly focus on determining optimization generation for the HTPS 
operation over a short-term period by using meta-heuristic algorithms. However, several shortcomings need to 
be addressed: 

1. The efficiency of the improved method over the original version has not been clarified in detail. For 
example, in [25], the author proposed the AFPSO to solve the optimization generation for the HTPS, but 
application of the original method was not executed for comparison with the proposed method. 

2. The results reported in [12] and [27] only focused on shortening the TEPE of the TMP rather than strictly 
respecting the related constraints of the given problem. 

3. Integration of renewable energy sources such as wind and solar energy was not the first priority. 
4. The revenue obtained by operating the HTPS following the optimal schedule found by the applied method 

was not evaluated. 

By acknowledging all these shortcomings from the previous studies, as mentioned above, this research was 

conducted to fully  solve the optimization generation problem for HTPS  and remove all flaws found previously. 
Specifically, the Self-Organizing Migration Optimization (SOMA) algorithm [29] and its improved version (ISOMA) 
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were applied to solve the problem with two main objective functions, i.e., minimizing the TEPE of the TMP and 

maximizing the total profit for operating the HTPS. Besides, the contribution of renewable energy sources such 
as wind and solar was also taken into account while reaching the second objective function. According to [29], 
the earliest version of SOMA, proposed in the 2000s, was based on swarm intelligence. Particularly, the whole 
searching process for the optimal solution of SOMA imitates the competition and cooperation practices of the 
individuals in a particular population through many of migrating loops. By acknowledging the strengths and 
weaknesses of the early version of the SOMA, ISOMA was proposed with a key improvement on the update 
mechanism for better efficiency over the early version. The main contributions of the whole study can be 
recapped as follows: 

1. Successfully propose an improved version of SOMA (ISOMA) to solve the HTPS problem for a period of 24 
hours. 

2. Indicate the improvement of ISOMA over its early version and other state-of-the-art meta-heuristic 
algorithms in terms of the TEPE value of the TMP in a period of 24 hours in the first system. 

3. ISOMA successfully considers both wind and solar energy and reaches more profit than SOMA in the second 
system. 

4. Diversify the trend of improving the former meta-heuristic algorithms to achieve better performance. 

The Problem Description 

The Main Objective Functions 

The present study applied ISOMA for two study cases with different objective functions. In the first case, ISOMA 
solved an existing system with one thermal power plant (THP) and one storage hydroelectric power plant 
(PSHDP) to reach the minimum total electricity production expenditure (TEPE). In the second case, ISOMA solved 
an expanded system by integrating one wind and one solar power plant into the existing system to maximize 
the total profit (TPRF). The two objective functions were formulated as follows: 

The First Objective Function 

The operation of TMPs expends a generation cost, called the total electricity production expenditure (TEPE), 
where the TEPE must be reduced as much as possible. Generally, TEPE is expressed by a square function, as 
considered in [26]. In addition, while the TEPE is considered in the hydrothermal scheduling problem (HTS), 
short-term hydrothermal scheduling is also considered. The determination of the TEPE was modified as 
mentioned in [28], which is given as in Eq. (1): 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇𝐸𝑃𝐸 = ∑ ∑ (𝛼1𝑘 + 𝛼2𝑘𝑃𝑇𝑀𝑘,𝑠 + 𝛼3𝑘𝑃𝑇𝑀𝑘,𝑠
2 )

𝑛1
𝑘=1

𝑆𝐼
𝑠=1     (1) 

where SI is the number of subperiods in the given schedule (it was selected to be 24 hours for a day in this study); 
n1 is the number of thermal power plants (TMPs); 𝛼1𝑘, 𝛼2𝑘 and 𝛼3𝑘  are the known coefficients of the TMP k 
with k = 1,2, …, n1; and 𝑃𝑇𝑀𝑘,𝑠 is the power generated by the TMP k in subperiod s. 

The Second Objective Function 

The second objective function was used to maximize the total profit while operating the HTPS. The mathematical 
expression of this objective function was formulated as follows: 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑇𝑃𝑅𝐹 = ∑ (𝑅𝑒𝑉𝑒𝑠 − 𝑇𝐸𝑃𝐸𝑠)𝑆𝐼
𝑠=1     (2) 

 𝑅𝑒𝑉𝑒 = ∑ (𝑃𝑅𝐶𝑠 × 𝑃𝐷𝑀𝑠)𝑆𝐼
𝑠=1   (3) 

In Eqs. (2) and (3), 𝑇𝑃𝑅𝐹  is the total profit; 𝑅𝑒𝑉𝑒𝑠 is the revenue obtained in subperiod s; 𝑃𝑅𝐶𝑠 is the price of 
the electricity sold to customers in subperiod s, and was known as a given data before implementing the 
optimization operation for the hybrid system in the second study case; and 𝑃𝐷𝑀𝑠 is the power demand in 
subperiod s. 
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The Related Constraints 

Power balance constraint of the generating and consuming sides: this constraint means that the total power 
produced by all generating sources must be equal to the power required by the consuming side (PDM) plus 
power loss (PLS) in the transmission lines. In [12], the mathematical expression of this constraint is described as 
follows:  

  ∑ 𝑃𝑇𝑀𝑘,𝑠
𝑛1
𝑘=1 + ∑ (𝑆𝑚,𝑠. 𝑃𝑇𝐻𝑚,𝑠)

𝑛2
𝑚=1 − ∑ [(1 − 𝑆𝑚,𝑠)𝑃𝑆𝐻𝑚,𝑠]

𝑛2
𝑚=1 − 𝑃𝐷𝑀𝑠 − 𝑃𝐿𝑆𝑠 = 0    (4) 

where 𝑛2 is the number of pumped storage hydroelectric power plants; 𝑃𝑇𝐻𝑚,𝑠 is the power output produced 

by the PSHDP m in subperiod s; 𝑃𝑆𝐻𝑚,𝑠 is the pump power of the PSHDP m in subperiod s; 𝑆𝑚,𝑠 is the operating 

mode of the m-th PSHDP in the s-th subinterval. In each operating subperiod, the m-th PSHDP can have one out 
of three modes, i.e., generating, pumping, and off. 𝑆𝑚,𝑠 is set to 1 when the operating mode is generating. 𝑆𝑚,𝑠 

is set to 0 when the operating mode is pumping. When the operating mode is pumping, the pump power 𝑃𝑆𝐻𝑚,𝑠 

is set to the maximum generation limit; meanwhile, the generation power is 0 MW. When the operating mode 
is off, the generation and the pumping power are 0 MW. The operating modes 𝑆𝑚,𝑠, pumping power 𝑃𝑆𝐻𝑚,𝑠, 

and generation power 𝑃𝑇𝐻𝑚,𝑠 are summarized as follows in Eq. (5):   

 Operating mode = {

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑛𝑔, 𝑡ℎ𝑒𝑛  𝑆𝑚,𝑠 = 1, 𝑃𝑇𝐻𝑚,𝑠 > 0 𝑎𝑛𝑑 𝑃𝑆𝐻𝑚,𝑠 = 0

𝑜𝑓𝑓,            𝑡ℎ𝑒𝑛  𝑃𝑇𝐻𝑚,𝑠 = 0 𝑎𝑛𝑑 𝑃𝑆𝐻𝑚,𝑠 = 0                                 

𝑃𝑢𝑚𝑝𝑖𝑛𝑔, 𝑡ℎ𝑒𝑛  𝑆𝑚,𝑠 = 0, 𝑃𝑇𝐻𝑚,𝑠 = 0 𝑎𝑛𝑑 𝑃𝑆𝐻𝑚,𝑠 = 𝑃𝑇𝐻𝑚
𝑚𝑎𝑥

     (5) 

 Here, 𝑃𝑇𝐻𝑚
𝑚𝑎𝑥 is the maximum generation limit of the m-th PSHDP.  

Constraint about the amount of released water from the reservoir: this constraint is mentioned in [9]. The study 
indicated how much water was ready to be released to the hydro turbine for producing electricity: 

 𝑊𝑅𝑆𝑚,𝑠 = 𝑇𝐿𝑠 × 𝑃𝑊𝑚,𝑠    (6) 

where 𝑊𝑅𝑆𝑚,𝑠 is the amount of released water streaming down to the hydro turbine of HDP m in subperiod s; 

𝑇𝐿𝑠  is the length of subperiod s; and PWm,s is the proportion of released water of HDP m in subperiod s. In [9], 

𝑃𝑊𝑚,𝑠 is obtained by applying in Eq. (7): 

 𝑃𝑊𝑚,𝑠 = 𝛽1𝑚 + 𝛽2𝑚𝑃𝑇𝐻𝑚,𝑠 + 𝛽3𝑚𝑃𝑇𝐻𝑚,𝑠
2     (7) 

where 𝛽1𝑚, 𝛽2𝑚 and 𝛽3𝑚 are coefficients of the released water proportion over the produced power output of 
PSHDP m. 

Constraint of balance of water in reservoir: In [9], this constraint is the relationship among three elements, i.e., 
the inflow, the released, and the pumped water. These elements are bound by the following constraint in Eq. 
(8): 

 𝑊𝑆𝑆𝑚,𝑠−1 − 𝑊𝑆𝑆𝑚,𝑠 + 𝑊𝑆𝐵𝑚,𝑠 − 𝑊𝑅𝑆𝑚,𝑠 + 𝑊𝑆𝐼𝑚,𝑠 = 0    (8)  

where 𝑊𝑆𝑆𝑚,𝑠−1 and 𝑊𝑆𝑆𝑚,𝑠 are the amounts of water available inside the reservoir m in subperiods s-1 and s; 

𝑊𝑆𝐵𝑚,𝑠 is the amount of water going back to the upper reservoir during the pumping mode of PSHDP m in 

subperiod s; and 𝑊𝑆𝐼𝑚,𝑠 is the volume of water inflow to the reservoir of PSHDP m in subperiod s. 

Constraint of water level at the initial point and the final point: According to [23], the water stored in reservoir 
must be restricted as follows:  

 𝑊𝑆𝑆𝑚,0 = 𝑊𝑆𝑆𝑚,𝑖𝑛𝑖; 𝑊𝑆𝑆𝑚,𝑆𝐼 = 𝑊𝑆𝑆𝑚,𝑓𝑖𝑛    (9) 

where 𝑊𝑆𝑆𝑚,𝑖𝑛𝑖  and 𝑊𝑆𝑆𝑚,𝑓𝑖𝑛 are the water levels in the reservoir of PSHDP m at the initial point and the final 

point of the schedule;  WSSm,0 and WSSm,SI are the water levels in the reservoir of PSHDP m before it is optimized 

and during the last subperiod SI.  

Constraint of water allowed to be stored in the reservoir: For safety reason as mentioned in [12], the capacity 
of storing water in the reservoir must be located within safe boundaries as described in the mathematical model 
below: 
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 𝑊𝑆𝑆𝑚
𝑚𝑖𝑛  ≤  𝑊𝑆𝑆𝑚,𝑠  ≤ 𝑊𝑆𝑆𝑚

𝑚𝑎𝑥  (10) 

where 𝑊𝑆𝑆𝑚
𝑚𝑖𝑛 and 𝑊𝑆𝑆𝑚

𝑚𝑎𝑥  are the lowest and the highest level of the water stored in the reservoir of the 
PSHDP. 

Constraint of water released: This constraint is about the proportion of the water released to the hydro turbines. 
In [27], this constraint is formulated as follows: 

 𝑃𝑊𝑚
𝑚𝑖𝑛  ≤ 𝑃𝑊𝑚,𝑠  ≤ 𝑃𝑊𝑚

𝑚𝑎𝑥m=1, 2, …, 𝑛2 ;s=1, 2, …, SI  (11) 

where 𝑃𝑊𝑚
𝑚𝑖𝑛 and 𝑃𝑊𝑚

𝑚𝑎𝑥  are the lowest and the highest proportion of released water from the upper reservoir 
of PSHDP m. 

Operation constraint of the generating mode and the pumping mode: This constraint is about the physical 
limits in the operation of both the TMP and the HDP. This means that the amount of power output produced by 
these power plants must be located within allowed ranges. Besides, the power utilized for the pumping mode 
of the PSHDP is also restricted in predetermined range. In [12], the mentioned ranges were formulated as 
follows:  

 𝑇𝑀𝑃𝑛
𝑚𝑖𝑛  ≤  𝑇𝑀𝑃𝑛,𝑠  ≤ 𝑇𝑀𝑃𝑛

𝑚𝑎𝑥  (12) 

 𝑃𝑇𝐻𝑚
𝑚𝑖𝑛  ≤  𝑃𝑇𝐻𝑚,𝑠  ≤ 𝑃𝑇𝐻𝑚

𝑚𝑎𝑥   (13) 

 𝑃𝑆𝐻𝑚
𝑚𝑖𝑛  ≤  𝑃𝑆𝐻𝑚,𝑠  ≤ 𝑃𝑆𝐻𝑚

𝑚𝑎𝑥  (14) 

In Eqs. (12) to (14),  𝑇𝑀𝑃𝑛
𝑚𝑖𝑛   and 𝑇𝑀𝑃𝑛

𝑚𝑎𝑥  are the lowest and highest value of the power output produced by 

TMP n;  𝑇𝑀𝑃𝑛,𝑠 is the power output produced by TMP n in subperiod s; 𝑃𝑇𝐻𝑚
𝑚𝑖𝑛  is the lowest power output of 

the  PSHDP; 𝑃𝑆𝐻𝑚
𝑚𝑖𝑛  and 𝑃𝑆𝐻𝑚

𝑚𝑎𝑥  are the lowest and the highest power utilized by PSHDP m; and 𝑃𝑆𝐻𝑚,𝑠 is the 

power utilized by PSHDP m in subperiod s. 

Searching Methods 

Original Self-Organizing Migrating Algorithm (SOMA) 

Like other metaheuristic algorithms such as particle swarm optimization, cuckoo search, differential evolution, 
and so on, the structure of the SOMA also comprises of three main stages, consisting of finding new solutions, 
calculating the fitness function, and keeping promising solutions. Basically, almost all metaheuristic algorithms 
use the same fitness function calculation and the same selection of promising solutions but different structures 
of new solution generation techniques. In this section, a new solution update procedure of SOMA is presented, 
and then the procedure is modified in the next section. 

The update process for new solutions of the original SOMA is executed by using the following mathematical 
expression: 

 𝑆𝑝
𝑀𝑅+1 = 𝑆𝑝

𝑀𝑅 + (𝑆𝐿𝐷
𝑀𝑅 − 𝑆𝑝

𝑀𝑅) × 𝑘 × 𝐶𝑅𝑇 × 𝑉𝑅 𝑤𝑖𝑡ℎ 𝑝 =  1, 2, . . . , 𝑃𝑍 − 𝑁𝐿  (15) 

Where  𝑆𝑝
𝑀𝑅+1 is the new position of individual p in loop (MR+1); 𝑆𝐿𝐷

𝑀𝑅 is the position of the leader individual in 

the current loop, MR;  𝑆𝑝
𝑀𝑅 is the current position of individual p; 𝑘 is the moving factor; CRT is the chaotic factor; 

VR is the vectoring regulator; 𝑃𝑍 is the value of the initial population; and NL is the number of leaders in each 
loop. There are three parameters, k, VR, and CRT, which are determined by: 

 𝑘 =  (𝑁𝑆𝐿 − 𝑛𝑖 + 1) × 𝑆𝐿   𝑤𝑖𝑡ℎ 𝑖 =  1, … 𝑁𝑆𝐿  (16) 

 𝑉𝑅 =  {
1,            𝑖𝑓 𝑅𝑛𝐷 < 𝐶𝑅𝑇 
0,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (17) 

 𝐶𝑅𝑇 = 0.1 +  0.9 × (
𝐸𝑉𝐿

𝐸𝑉𝐿𝑚𝑎𝑥)  (18) 
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In Eq. (16), 𝑁𝑆𝐿 is the number of jumping steps; 𝑛𝑖  is the jumping step size, i; and SL is the length of each jumping 
step. In Eq. (17), RnD is a randomized value between 1 and 0. In Eq. (18), 𝐸𝑉𝐿 and 𝐸𝑉𝐿𝑚𝑎𝑥   are the number of 
fitness evaluations and the maximum fitness evaluation number. 

The Modified Self-Organizing Migrating Algorithm (ISOMA) 

As shown in Eqs. (15) and (17), the update procedure of SOMA is much dependent on randomization factor VR. 
As pointed out in Eq. (17), VR has two different values, either 1 or 0. If VR is equal to 0, the second term on the 
right-hand side of Eq. (15) is equal to 0. As a result, the new solution 𝑆𝑝

𝑀𝑅+1 and the old solution 𝑆𝑝
𝑀𝑅are the 

same. This means that the p-th solution is not newly updated. As the random number RnD in Eq. (17) is smaller 
than CRT obtained by using Eq. (18), VR will get a value of 0. To see the impact of CRT on the update procedure 
of SOMA, CRT and VR were simulated over 100 iterations with the selection of 20 for the population. The 
simulation results are reported in Figure 1. The figure indicates that CRT increased linearly as the iteration 
increased. Random number RnD changed within 0 and 1, whereas VR had two values, 0 or 1. Clearly, for cases 
where RnD is higher than CRT, and VR gets zero values. For other cases where RnD is not greater than CRT, VR 
becomes 1. VR got many 0 values over 100 iterations. This means that there were many iterations where the 
new solution 𝑆𝑝

𝑀𝑅+1 was the same as the old solution 𝑆𝑝
𝑀𝑅. The effectiveness of SOMA is restricted due to the 

case of VR = 0. Hence, Eq. (15) was modified as in Eq. (19). 

 

Figure 1 Simulation result of CRT and VR over 100 computation iterations. 

 𝑆𝑝
𝑀𝑅+1 = 𝑆𝑝

𝑀𝑅 + (𝑆𝐿𝐷
𝑀𝑅 − 𝑆𝑝

𝑀𝑅) × 𝑘 × 𝐶𝑅𝑇 × 𝑉𝑅 × 𝑠𝑟𝑓1 

                  +(𝑆𝐿𝐷
𝑀𝑅 − 𝑆𝑝

𝑀𝑅) × 𝑅𝑛𝐷 × 𝑠𝑟𝑓2 ;  𝑤𝑖𝑡ℎ 𝑝 =  1, 2, . . . , 𝑃𝑍 − 𝑁𝐿                      (19) 

In the formula, 𝑠𝑟𝑓1 and 𝑠𝑟𝑓2 are the shrinking factors, which are selected randomly in a range from 0.1 to 0.5. 
The use of 𝑠𝑟𝑓1in the first jumping step is done to narrow the size of the first step; meanwhile, the second step 
is very important to enlarge the searching zone for the last computation iterations. The combination is very 
useful in finding more appropriate zones for reaching good solutions. The proposed modification is the key factor 
in achieving better results with ISOMA, while SOMA cannot reach the same best solution and the same 
performance for the problem considered in this paper. 

Results and Discussions 

In this section, both SOMA and ISOMA will be applied to determine the optimization generation of HTPS in two 
different case studies. The description of each case study is as follows: 
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1. Case 1: The first objective function, minimizing the total generation cost of the thermal power plant, 
shown in Eq. (1), was applied for the first HTPS. The HTPS comprised one TMP and one PSHDP without 
renewable energies (RESs). In Case 1, we compared the total generation cost (TEPE) of ISOMA with that 
of SOMA and other algorithms, namely EP in [27], AFPSO in [25], and APSO in [24]. The comparison was 
aimed at seeing if ISOMA was more effective than the other algorithms and would be more suitable for 
the simulation in Case 2. 

2. Case 2: The second objective function, maximizing the total profit, shown in Eq. (2), was applied for the 
second HTPS. The second HTPS was an expanded system that integrated one solar and one wind power 
plant into the first system from Case 1. In Case 2, we compared ISOMA’s total profit with that of SOMA. 
As a result, we found that ISOMA could reach a greater total profit than SOMA. Thus, ISOMA effectively 
maximized the total profit of the hybrid power system with one TMP, one PSHDP, one solar power plant, 
and one wind power plant. 

To further highlight the improvement of ISOMA over SOMA, these methods were set with the same control 
parameters in terms of the path length, step, maximum number of iterations, maximum number of fitness 
evaluations, and number of independent runs. These settings were 3.0, 0.11, 1000, 50000, and 50, respectively. 

All the related work for this study was executed on a personal computer with the following basic specifications: 
central processing unit (CPU) Intel Core i7-12700H with 2.6 GHz of clock speed, random access memory (RAM) 
DDR5 8GB with bandwidth 4800 Gb/s. All codes and simulations were compiled in the Matlab program, version 
2018b. 

Results Achieved in Case Study 1 

The case study was performed on a system with one TMP and one PSHDP over 24 hours. The power system 
configuration and the load demand within 24 hours are described in Figures 2 and 3. Note that the power losses 
on lines were ignored. 

 
 

Figure 2  The power system illustration. Figure 3  Load demand within 24 hours. 

Figure 4 shows the summary after 50 independent runs of both SOMA and ISOMA. The black curve stands for 
the results obtained by SOMA, while the red one represents the same values achieved by ISOMA. By observing 
the figure, the proposed ISOMA could achieve more optimal results than SOMA during 50 independent runs. 
The results mean that ISOMA showed superiority over SOMA while dealing with the optimization generation 
problem with the objective function of minimizing the TEPE of the TMP.  

The superiority of ISOMA over SOMA is shown further in Figure 5. In the figure, the results obtained by the two 
applied methods are compared in terms of the minimum TEPE, mean TEPE, and maximum TEPE. ISOMA 
completely outperformed SOMA on all criteria. Specifically, while the minimum TEPE achieved by ISOMA was 
only 269,216.8 ($), the same value reported by SOMA was up to 269,644.1($). The cost savings for the TEPE on 
this criterion was 427.3($), or 0.16%. While observing the mean TEPE and the maximum TEPE, the values 
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achieved by ISOMA were all better than those achieved by SOMA. Particularly, the results achieved by ISOMA 
on these criteria were 269,623.0($) and 269,655.3($), respectively, while similar results given by SOMA were 
269,649.8($) for the mean TEPE and up to 269,682.0($) for the maximum TEPE. The cost savings of ISOMA over 
SOMA for the mean TEPE and max TEPE were 26.8($) and 26.7($), respectively. 

  

Figure 4  The results achieved by both SOMA and 
ISOMA after 50 independent runs. 

Figure 5  Comparison between SOMA and ISOMA 
on different criteria. 

In Figure 6, the minimum TEPE achieved by ISOMA is compared with the results obtained by other methods, 
such as EP in [27], AFPSO in [25], and APSO in [24]. In the figure, it is easy to recognize that the TEPE value 
obtained by ISOMA was overall better than that of the other methods. The cost savings in percentage of ISOMA 
over EP, AFPSO, and APSO was 0.16%. 

 

Figure 6  Comparison between the two applied methods and the other methods. 

Figure 7 shows the water level in the reservoir of the PSHDP within 24 hours found by ISOMA. In the figure, 
ISOMA satisfies all the related constraints of the hydropower plant. Specifically, the water level at the initial 
point and the final point of the whole schedule are equal. The amount of water storage represented by the red 
line varied within the allowed ranges. Also, the volume of released water satisfied its constraint. 
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Figure 7  Reservoir volume of the PSHDP in Case Study 1 for 24 hours. 

The Results Achieved in Case Study 2 

In this section, both the wind and solar generators were connected to the first power system, as described in 

Figure 8. The related data about the power output of wind power plants (Windpower), the power 
output of solar power plants (PV power), and the electricity price for each hour were taken from [30], 
[31], and [32], respectively. These data are presented again in Figure 9. Recall that the main objective 

function in this case study was used to maximize the total profit (TPRF) of operating the HTPS.    

  

Figure 8  Power system used in Case Study 2 with the 
presences of both wind and solar energy. 

Figure 9  The power output of the wind and solar 
generators, and the electricity price.  

Figure 10 shows that the application of ISOMA increases the TPRF values over SOMA in terms of the maximum 
profit, mean profit, and minimum profit. Specifically, the additional profit brought by ISOMA over SOMA at the 
maximum TPRF was 0.4 ($), while the same values in terms of mean TPRF and minimum TPFR were 2.5 ($) and 
5.3 ($), respectively.   
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Figure 10  The profit obtained by both SOMA and ISOMA with the second objective function. 

Figure 11 shows the reservoir volume of the PSHDP within 24 hours found by SOMA. By observing the figure, 
all related constraints, such as the constraint of the water level at the initial and final points, the 
constraint of allowed water stored in the reservoir, and the constraint of released water, are all 
satisfied. 

 

Figure 11  Water volume in the reservoir of the PSHDP in Case Study 2 during 24 hours. 

Volume, inflow, stored water, and discharge of PSHDP for the two cases in the most effective solution reached 
by ISOMA are presented in Table A1 and Table A2 in the Appendix. 
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Conclusion 

This study proposed a successfully improved version of the self-organizing migration algorithm (ISOMA) to 
determine the optimization generation for an HTPS. The efficiency of the new method was validated in different 
case studies, including Case 1, with the main objective function minimizing the TEPE of the thermal power plant, 
and Case 2, with the main objective function maximizing the TPRF of the HTPS operation. Besides, both wind 
and solar energy were taken into account in the power system used in Case 2. The results obtained in Case 1 
indicate that ISOMA completely outperformed SOMA on all compared criteria. Specifically, ISOMA saved 427.3 
($) or 0.16% of the TEPE value over SOMA. Besides, when ISOMA was compared with other methods (EP, AFPSO, 
and APSO), the efficiency percentage of ISOMA compared to these methods was approximately 0.16% better in 
each case. The evaluation of the results obtained in Case 2 also points out that ISOMA is completely superior to 
SOMA in terms of maximum TPRF, mean TPRF, and minimum TPRF. As a result, ISOMA can be considered an 
efficient search method. Therefore, we suggest using ISOMA to deal with the optimization generation problem 
of HTPS. 

Regardless of the positive results obtained by ISOMA, there are also some shortcomings that need to be 
improved in this study. For example, the scale of the power system is very small and impractical in practice; 
features of the electricity market were not clearly considered; the improvement of ISOMA over SOMA and other 
compared methods were not significant enough for a breakthrough; ISOMA focused on modifying the updating 
mechanism, while other auxiliary parameters that heavily affect the whole searching process remained the 
same. In the future, the optimization generation problem for HTPS should be solved on a larger scale, and the 
rules of the electricity market should be deeply evaluated. SOMA should be improved more to reach a higher 
degree of efficiency for dealing with a larger scale of the optimization generation problem for HTPS. 
Furthermore, optimization software to solve problems in power systems, such as ETAP, Powerworld, Power 
system optimizer, and Gurobi optimizer, will be applied for result comparisons with proposed versions of SOMA. 
Among this software, Gurobi optimizer is a promising optimization tool for complex nonlinear problems. It can 
reach global optimal solutions of complex nonlinear problems at high speed. The development of effective 
metaheuristic algorithms and the use of high-performance software, in addition to the consideration of large-
scale and real power systems, are expected to result in significantly valuable future studies. 
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Appendix 

Table A1 The best solution from ISOMA in Case study 1 

Hour Volume (arce-ft) Inflow (arce-ft) Stored water (arce-ft) Discharge (arce-ft) 

Initial 8000.0 - - - 
1 7361.6 0 0 -638.4 
2 6593.9 0 0 -767.8 
3 5904.2 0 0 -689.7 
4 5384.7 0 0 -519.5 
5 4592.7 0 0 -792.0 
6 3835.7 0 0 -757.0 
7 3040.3 0 0 -795.4 
8 2314.9 0 0 -725.4 
9 1544.1 0 0 -770.8 

10 2144.1 0 600 0.0 
11 1436.8 0 0 -707.3 
12 800.0 0 0 -636.8 
13 1400.0 0 600 0.0 
14 2000.0 0 600 0.0 
15 2600.0 0 600 0.0 
16 3200.0 0 600 0.0 
17 3800.0 0 600 0.0 
18 4400.0 0 600 0.0 
19 5000.0 0 600 0.0 
20 5600.0 0 600 0.0 
21 6200.0 0 600 0.0 
22 6800.0 0 600 0.0 
23 7400.0 0 600 0.0 
24 8000.0 0 600 0.0 

Table A2 The best solution from ISOMA in Case study 2. 

Hour Volume (arce-ft) Inflow (arce-ft) Stored water (arce-ft) Discharge (arce-ft) 

Initial 8000.0 - - - 
1 7450.7 0 0 -549 
2 6903.1 0 0 -548 
3 6360.8 0 0 -542 
4 5818.8 0 0 -542 
5 5018.8 0 0 -800 
6 4218.8 0 0 -800 
7 3418.8 0 0 -800 
8 2618.8 0 0 -800 
9 2136.6 0 0 -482 

10 1680.1 0 0 -456 
11 1234.6 0 0 -446 
12 800.0 0 0 -435 
13 1400.0 0 600 0 
14 2000.0 0 600 0 
15 2600.0 0 600 0 
16 3200.0 0 600 0 
17 3800.0 0 600 0 
18 4400.0 0 600 0 
19 5000.0 0 600 0 
20 5600.0 0 600 0 
21 6200.0 0 600 0 
22 6800.0 0 600 0 
23 7400.0 0 600 0 
24 8000.0 0 600 0 

 


