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Abstract 

In recent years, face detection has been widely applied in various intelligent monitoring systems. However, missed detections and 
low detection accuracy present challenges, such as small, blurred, and occluded faces in multi-face detection scenarios. To address 
these challenges, an adaptive multi-region fusion network is designed for dense face detection. First, in the shallow layers of the 
network, a multi-scale cross-stage fusion (MC4f) module is designed to replace the C3 module, which solves the issue of gradient 
explosion or disappearance in deep networks and promotes the effective convergence of the network on small datasets. An adaptive 
fusion explicit spatial vision centre (AESVC) is then designed between the backbone and neck networks to adaptively fuse local and 
global features to refine face information and enhance feature representation capabilities in complex tasks. Subsequently, a multi-
scale parallel attention mechanism (MSPAM) is proposed to enhance the cross-scale fusion of facial features and reduce the loss of 
shallow features. Finally, to achieve accurate facial key point localisation and alignment, wing loss and A-loss functions are integrated, 
which balances the relationship between easy and difficult samples. Compared with the original model, the proposed model increases 
the mean average precision (mAP) by 1.75, 2.01, and 3.06% for easy, medium, and hard samples, respectively. The experimental 
results prove the effectiveness of the adaptive multi-region fusion network for dense face detection. 
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Introduction 

Face detection (Kobylkov & Vallortigara, 2024; Naseri et al., 2023; Wang & Deng, 2021) is an important task in computer 
vision that has progressed significantly with the development of deep learning (Debbouche et al., 2021). As the first step 
for tasks such as face recognition (Alansari et al., 2023; Cardona-Pineda et al., 2023; Gao et al., 2023), face tracking 
(Hannuksela, 2022; ImranAhsan et al., 2024; Liu et al., 2022), face alignment (Freitas et al., 2024; Ma et al., 2024; 
Saadabadi et al., 2024), and expression analysis (Ben et al., 2021), face detection has been extensively researched 
worldwide (Hioual et al., 2022). In recent years, face detection performance has significantly improved and has been 
increasingly applied in various fields such as intelligent transportation (Li et al., 2024), security surveillance (Liu et al., 
2023), education (Hioual et al., 2022), training, and medical diagnostics. However, face detection in densely populated 
scenarios still faces challenges, such as occlusion and small-scale face imaging. 

Many studies worldwide have explored the field of face detection. He et al. (2023) employed an improved training sample 
selection (ITSS) approach to identify valuable samples during the training phase. This approach incorporated a residual 
feature pyramid fusion (RFPF) module to aggregate features with strong semantic resilience, thereby improving face 
representation across various levels of the feature pyramid. Liu et al. (2024) adopted an improved RetinaFace algorithm 
that incorporated deformable convolution (DC), feature pyramid networks (FPN), and coordinate attention (CA) 
mechanisms. With minimal additional computational overheads, the algorithm enhanced the semantic information of the 
lower-level features, thereby improving the robustness of face detection across different face sizes. Yu et al. (2022) 
adopted a receptive field enhancement (RFE) module to expand the receptive field to detect smaller faces and reduce the 
intersection over union (IoU) sensitivity to small object localisation deviations through the normal wasserstein distance 
(NWD) loss (Xu et al., 2024). The module also introduced a self-supervised equivariant attention mechanism (SEAM) and 
repulsion loss to address face occlusion issues but neglected the regression of facial key points. Based on the you only 
look once (YOLO) algorithm, YOLO5Face, proposed by Qi et al. (2022), is an adaptation of the YOLOv5 framework for face 
detection, adding five facial key point regression heads and using the wing loss function. This algorithm recognises and 
locates facial features with high accuracy and performs well on the wider face dataset (Chen et al., 2021). 
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Although the aforementioned face detection research has made significant progress and is maturing, the following 
challenges remain:  

1. Common feature fusion operations do not perform effective filtering or weighted fusion, which may lead to 
the introduction of redundant information, thereby reducing the expressive power of a model, which is 
detrimental to the detection of small-scale faces. 

2. Some methods enhance the global perception of a model through global features, and local feature 
information may be lost during layer-by-layer fusion, resulting in the model being unable to focus effectively 
on key details. 

3. Both shallow semantic and deeper features are important; commonly used approaches focus on shallow 
information, ignoring the relationship between contextual information and more fine-grained features for 
deeper features. 

4. Traditional regression loss, such as L2 or mean squared error, typically perform well when the objects are large; 
however, when dealing with small objects, the errors are more difficult to control with precision. 

To address these challenges, this study aims to improve the accuracy of multi-scale face detection using a lightweight 
model and proposes an adaptive multi-region fusion network for face detection. 

The main contributions of this study are summarized as follows:  

1. The YOLOv5n backbone is reconstructed using the designed multi-scale cross-stage fusion (MC4f) module to 
address the gradient explosion or disappearance issues that lightweight and deep linear networks may 
encounter and to improve the cross-scale feature fusion capability. 

2. An adaptive fusion explicit spatial vision centre (AESVC) is designed between the spine and neck to enhance 
the global perception of the model by spatially fusing the blocks to establish complementary connections 
between local and global features and reduce the loss of local feature information. 

3. A multi-scale parallel attention mechanism (MSPAM) is proposed to enhance the multi-scale fusion of facial 
features by focusing on deep features and multi-scale feature information, and reducing the loss of shallow 
features. 

The model introduces facial key point regression and wing loss, ensuring stronger robustness and accuracy, particularly 
for small objects or challenging facial detection scenarios. 

Related Work 

YOLO 

This study adopts YOLOv5 (Jocher et al., 2022) as the baseline model, with a network architecture consisting of five main 
parts; an input module (input), backbone network (backbone), feature fusion network (neck), training process (training), 
and prediction process (prediction).  

In the input module, the model uses a 640 × 640 × 3 RGB image as the input. The backbone network module alternates 
between the Conv BN SiLU (CBS), with batch normalization (BN) and the sigmoid linear unit (SiLU), and C3 modules for 
feature extraction. In particular, the design of the C3 module draws on the architecture of the cross-stage partial network 
(CSPNet) (Wang et al., 2020) to effectively extract facial feature information from images. The feature fusion network 
module combines the architectures of FPN (Gong et al., 2021) and path aggregation networks (PANet) (Liu et al., 2018) to 
achieve the effective fusion of facial features at different levels. The architectural design and implementation of YOLOv5 
have delivered excellent performance in face detection applications. 

The inception of the YOLO algorithm (Jiang et al., 2022) marked a significant shift towards whole-image processing. With 
YOLO, object detection tasks exhibit improved efficiency because images are processed in a single pass. This approach 
contrasts with selective search methods, leading to significantly faster inference times, which are crucial for real-time 
applications. 

The YOLO algorithm has undergone various iterations, each aimed at refining the performance and efficiency of the model 
(Chitraningrum et al., 2024). Notable improvements include YOLOv2, which introduced anchor boxes to predict object 
bounding boxes more accurately, and could detect over 9000 object categories by jointly training on the ImageNet and 
common objects in context (COCO) datasets (Sharma, 2021). YOLOv3 further enhanced the ability of the algorithm to 
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detect objects at different scales using a multi-scale detection approach. YOLOv4 and YOLOv5 continued this trend, with 
optimisations for improved speed and accuracy, allowing the model to perform well on lower-power devices while 
maintaining high performance. 

YOLO has been tailored to address the challenges associated with face detection. Enhancements such as improved loss 
functions for bounding box predictions, integration of additional layers attuned to facial feature detection, and training 
on extensive face datasets have been key to adapting YOLO for face detection. Research continues to push the boundaries 
of the applications of YOLO in face detection, balancing the trade-off between real-time processing and high-precision 
requirements for detecting small or partially occluded faces, as well as operating across a range of scales and 
environmental conditions. 

Face Detection 

Face detection is a critical area of research, serving as the cornerstone for various applications such as biometric 
authentication, surveillance, and social media. Classic face detection techniques, such as Viola-Jones detectors (Rahmad 
et al., 2020), are the foundation of developments in this area, leveraging features such as Haar cascades. However, these 
methods struggle with image variations owing to lighting, occlusion, and orientation. 

With the emergence of deep learning technologies, convolutional neural networks (CNNs) (Alzubaidi et al., 2021) have 
become the foundation for advancements in face detection techniques. Proposed architectures, such as region-based 
CNN (R-CNN) (Xie et al., 2021) and its iterations of fast R-CNN and faster R-CNN (Ren et al., 2015)), have demonstrated 
significant improvements in accuracy and reliability by incorporating regional information with deep learning. 

Further research on face detection is inclined towards creating robust systems that not only perform well in controlled 
environments but also excel in uncontrolled real-world scenarios that involve challenges such as occluded faces, densely 
packed faces at multiple scales, and small, blurred faces. Numerous methods have been proposed to address these issues, 
particularly focusing on the scale, context, and anchors for face detection in various complex scenes. These methods 
include multi-task cascaded CNN (MTCNN) (Xiang & Zhu, 2017), FaceBoxes (Zhang et al., 2017a), single shot scale-invariant 
face detector (S3FD) (Zhang et al., 2017b), dual shot face detector (DSFD) (Li et al., 2019), RetinaFace (Deng et al., 2019), 
RefineFace (Zhang et al., 2020), and the more recent additions of automatic and scalable face detector (ASFD) (Zhang et 
al., 2020), MaskFace (Yashunin et al., 2020), TinaFace (Zhu et al., 2020), MogFace (Liu et al., 2022), sample and 
computation redistribution for efficient face detection (SCRFD) (Guo et al., 2021), and YOLO5Face (Qi et al., 2022). 
YOLO5Face employs the wing loss (Feng et al., 2018) function to locate five facial landmarks, aiding in the supervision of 
face detection. This method is adopted in this study for the localisation of five facial key points. 

Proposed Method 

Overview  

The proposed model adopted YOLOv5 as the baseline framework. After optimisation, the algorithm achieved a better 
facial detection performance. The reconstructed YOLOv5nFace network architecture includes the backbone, neck, and 
head, and is shown in Figure 1. 

The backbone network was reconstructed using the MC4f module with a partial network bottleneck and four convolutions 
to improve the feature extraction capabilities. An AESVC was designed between the backbone and neck of the network 
to improve the ability of the expressive ability of the model for complex tasks. The MSPAM attention mechanism was 
proposed to boost the cross-scale fusion of facial features. In the head section, the model conducted multi-scale target 
detection on the feature maps extracted by the backbone to achieve face detection 
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 Proposed network architecture. 

MC4f 

To improve the feature extraction ability of the network and capture more facial features, an MC4f module was designed. 
Inspired by the C3 and C2f modules, a split operation was used. The number of input tensor channels for each bottleneck 
structure in the MC4f module was only half that of the previous structure. This significantly reduced the number of 
calculations, and the increase in the gradient flow also significantly improved the convergence speed and effect. 
Furthermore, the efficient layer aggregation network (ELAN) concept from YOLOv7 was employed to obtain more 
abundant gradient flow details while maintaining a lighter framework by increasing the parallelism among the gradient 
flow branches. 

The original C2f module carries the risk of gradient disappearance and explosion. Therefore, residual connections were 
added to the MC4f module, the convolution operation was integrated into the residual channel, and the main channel 
was compressed through point-wise convolution to obtain the final output. The design of the residual channel effectively 
solved the problem of gradient explosion or disappearance in deep networks and promoted convergence on small 
datasets. The structure of the MC4f module is shown in Figure 2. 

 

 MC4f module with a partial network bottleneck and four convolutions. The full name of CGS is Conv Group 
Normalization SiLU. 
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In the original C2f, BN in the CBS module was replaced by group normalization (GN) to produce Conv GN SiLU (CGS) (Wu 
& He, 2018). BN may produce large errors in small batch training, whereas GN can significantly reduce errors under the 
same small batch condition; its calculation is independent of the batch size, and it can maintain a stable accuracy under 
various batch sizes. 

In summary, the channel splitting and parallel processing operations of MC4f enhance the model's ability to capture multi-
scale features, which helps to identify local details more effectively in difficult scenes. Furthermore, the residual cascade 
mechanism in the designed structure plays a crucial role in addressing gradient attenuation. It achieves this through 
optimized skip-connections, which enhance training stability in deep network architectures. 

AESVC 

In dense face detection scenarios, missed detections frequently occur with small-scale faces owing to the insufficiency of 
effective features. The explicit vision centre (EVC) module (Quan et al., 2023) aimed to address this challenge, however, 
it failed to mitigate background noise interference and effectively extract features at various scales. To enhance the 
detection performance and address these inherent issues in the EVC, an improved AESVC architecture was proposed 
within the FPN framework. The structure of the AESVC is illustrated in Figure 3. 

Compared with the EVC, the following improvements have been made in the AESVC module. First, the CBS module was 
introduced within the learnable vision centre (LVC) module, replacing the original rectified linear unit (ReLU) activation 
function in the EVC module with a SiLU. SiLU has non-zero gradients in both the positive and negative domains, which 
facilitates network-refined data representations. 

 

 Adaptive fusion explicit spatial vision center, where a lightweight MLP architecture is used to capture the 
long-range dependencies and a parallel learnable visual center mechanism is used to aggregate the local corner regions 
of the input image. The integrated features contain advantages of these two blocks, so that the detection model can 
learn an all-round yet discriminative feature representation. 

Second, the global features output by the multi-layer perceptron (MLP) and the local features from the LVC module were 
adaptively fused through the simplified attention module (SimAM) (Yang et al., 2021). SimAM uses reversible mapping to 
infer attention weights, thereby assigning proper weights to both global and local features and improving the ability of 
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the model to express itself in complex tasks. Moreover, without increasing parameters, the perceptual scope of the model 
is enhanced, enabling an explicit increase in the spatial weighting of the global representation along the top-down path; 
the AESVC module can realize multi-scale feature representations. Experiments have shown that incorporating the AESVC 
module into the backbone network can improve the detection speed and expressive capability of multi-scale features of 
the model. 

MSPAM 

In the context of face detection in complex scenes, negative factors, such as occlusions, unclear images, and small, blurry 
faces, can significantly affect dense face detection. The convolutional block attention module (CBAM) (Woo et al., 2018) 
integrates a spatial attention module (SAM) (Tootell et al., 1998) and channel attention module (CAM) (Qin et al., 2021) 
in a serial structure. Furthermore, it enhances the accuracy and robustness of facial detection. 

Although the CBAM places high importance on the CAM, it still affects the features learned by the subsequent SAM. 
Therefore, to allow both types of attention modules direct access to the original features, this study improved upon CBAM 
by changing its connection from serial to parallel. This resulted in a MSPAM that does not need to consider the order of 
spatial and channel attention. The improved MSPAM structure is illustrated in Figure 4. 

 

 MSPAM structure. 

The MSPAM integrates multi-scale convolution. The structure of the multiscale spatial attention module is shown in Figure 
5. The input feature map F undergoes global average and maximum pooling separately in the channel dimension. After 
concatenation and fusion, the input feature map F is then input into a multi-scale convolutional pathway. By combining 
features from different receptive fields, fine local details and global features are captured. The structure includes a 
standard 1 × 1 convolution layer and three depth-wise separable convolutions of sizes 3 × 3, 5 × 5, and 7 × 7, respectively. 
The outputs are then concatenated and fused, passed through a 1 × 1 convolution layer for dimension reduction, and 

finally normalised using a sigmoid activation function to generate the spatial attention weights 
S

M . The specific formulae 

for this process are given by Eqs. (1) and (2): 

 𝛬(⋅) = [𝐷𝑊𝐶𝑜𝑛𝑣(1,1)(⋅), 𝐷𝑊𝐶𝑜𝑛𝑣(3,3)(⋅), 𝐷𝑊𝐶𝑜𝑛𝑣(5,5)(⋅), 𝐷𝑊𝐶𝑜𝑛𝑣(7,7)(⋅)]    (1) 

 𝑀𝑆(𝐹) = 𝜎(𝑓1×1(𝑐𝑜𝑛𝑐𝑎𝑡(𝛬[𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹); 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹)])))      (2) 

where   denotes the multi-scale convolutional pathway, 𝐷𝑊𝐶𝑜𝑛𝑣(𝑖,𝑖) denotes the use of a convolutional kernel of size i, 

and 
1 1

f


 represents a convolution operation with a kernel size of 1 × 1. 

 

 Multi-Scale Spatial Attention Module. 
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The MSPAM module integrates channel attention and spatial attention to extract multi-scale features from disparate 
dimensions. Among them, channel attention focuses on semantic-level features, such as channel responses of skin color 
and texture. In contrast, spatial attention extracts spatial information under different perceptual fields, which uses a 
multi-scale convolutional kernel to adaptively capture alternative features in occluded regions of the face. Moreover, this 
module forms a synergy with the lightweight gradient flow optimization of the MC4f module, which together improve the 
robustness and accuracy of dense face detection. 

Face Loss Function 

The key points of facial features can be used for facial alignment and recognition. The traditional key points involved 68 
distinct locations. This was reduced to five key points using the MTCNN (Xiang & Zhu, 2017), which have been extensively 
adopted for facial recognition. Drawing inspiration from YOLO5face, these five key points were incorporated into the 
model in this study. The quality of face key point positioning affects the quality of face alignment and recognition. 
Common face detectors do not include key points, which were added to the model in this study as regression headers. 
The localisation output of the face key points was used to align the face image before it was sent to the facial recognition 
network. Therefore, the processing of difficult samples was optimised while improving positioning accuracy. 

L1 and L2 loss functions are commonly used for locating facial key points; however, the L2 loss function used in the MTCNN 
is not sensitive to small errors. The wing loss function used in this study optimized this problem. The formula for the wing 
loss is shown in Eq. (3). 

 𝑤𝑖𝑛𝑔(𝑥) = {
𝑤 ⋅ 𝑙𝑛( 1 + |𝑥|/𝑒), 𝑖𝑓 𝑥 < 𝑤 

|𝑥| − 𝐶,                h  w s 
            (3) 

where the range of the nonlinear part is set to a non-negative value w , ranging from w−  to w ; e  is used to limit the 

curvature to a nonlinear region; and ln(1 / )C w w w e= − +  is a constant used to connect the linear and nonlinear parts 

of the segmentation smoothly. Compared with the L1 and L2 functions, the wing loss significantly enhances the response 
in the small-error region close to zero. The loss function for the facial key point vector s is defined in Eq. (4). 

 𝑊𝑖𝑛𝑔𝑙𝑜𝑠𝑠 = ∑ 𝑤𝑖𝑛𝑔(𝑠𝑖 − 𝑠𝑖
′)𝑖              (4) 

The bounding box and wing loss five-point regression loss functions were combined to obtain the FaceLoss function in 
this study, as shown in Eq. (5). 

 𝐹𝑎𝑐𝑒𝐿𝑜𝑠𝑠 = 𝐿𝛼−𝐶𝐼𝑂𝑈 + 𝜆𝐿 ⋅ 𝑊𝑖𝑛𝑔𝑙𝑜𝑠𝑠             (5) 

where 
L

  is the weight factor of the key point-regression loss function. After blending the loss functions, the model 

became more sensitive to small errors, thereby significantly improving the detection results for small-scale faces. 

Experiments 

Implementation and Dataset 

All experiments were conducted using a deep-learning framework built on Python 3.8.17 and PyTorch 1.11.0. The 
operating system used was Ubuntu 20.04, and the GPU model was an NVIDIA GeForce RTX 4090 with 24GB of VRAM.  

In the experiments, the size of the training images was set to 640 × 640 pixels, the batch size was set to 64, and the 
number of epochs was set to 250. The optimization process uses SGD with momentum mechanism. The initial learning 
rate is calibrated to 1E-2, and the final learning rate is 1E-3, while the weight decay parameter is set to 5E-3. In the first 
three epochs of the warm-up phase, a momentum value of 0.8 is applied, which is subsequently adjusted to 0.937. The 
IoU threshold for the NMS operation is set to 0.5. The anchor box sizes for the wider face dataset were calculated using 
the K-means clustering algorithm, as listed in Table 1. 

The wider face dataset is the most extensive image collection for face detection, comprising 32,203 images and over 
400,000 faces. The dataset is diverse, containing many small-scale faces and complex scenes and supporting face 
detection assessment. The wider face dataset is randomly partitioned into training, validation, and testing sets, with 
allocations of 50, 10, and 40%, respectively. It is organised into three difficulty categories: easy, medium, and hard, with 
the hard category being the most challenging because it mostly contains small-scale faces in complex scenes. The 
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performance on the hard subset is most indicative of the ability of a face detector to detect small-scale faces. Therefore, 
the wider face dataset is suitable for validating the designed algorithm in various complex scenes. 

Table 1 Anchor Box Sizes for Wider Face Dataset. 

Feature Map Size Anchor Box Size 

160 × 160 4，5 6，7 8，11 

80 × 80 12，15 17，21 24，30 

40 × 40 33，42 48，67 67，87 

20 × 20 110，155 167，233 248，387 

Evaluation Metrics 

To evaluate the efficiency and precision of face detection, the main evaluation indicators were the mean average precision 
(mAP) of each category, parameters (params), and detection speed (speed). mAP reflects the overall performance of the 
algorithm, as shown in Eqs. (6)-(8), where the size of the parameter count indicates the possible application scenarios of 
the model; and the detection speed is the time required to detect a single image, measured in milliseconds. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
              (6) 

 𝐴𝑃 =
1

𝑟
∑ 𝑃𝑖

𝑟
𝑖=1                (7) 

 𝑚𝐴𝑃 =
1

𝑆𝑈𝑀
∑ 𝐴𝑃𝑗

𝑆𝑈𝑀
𝑗=1               (8) 

where TP represents the true-positive samples in the detection results, FP represents false-positive samples where the 
detection result is positive for a negative sample, r represents all possible values of the recall rate, and SUM denotes the 
total number of categories. 

Ablation Study 

To validate the feasibility of each step of the improvements in this study, an ablation experiment was conducted, as listed 
in Table 2. 

MC4f vs. C3. The mAP performance of substituting the backbone network C3 module with the MC4f module is listed in 

Table 2. Based on these findings, it was evident that there were increases of 1.64, 1.89, and 3.30% in the easy, medium, 

and hard subsets, respectively. This is due to the MC4f module's optimized feature extraction structure and improved 

normalization strategy. Therefore it has stronger feature extraction capability. 

AESVC. The performance enhancements from the AESVC module are listed in the third row of Table 2, where it is evident 
that the inclusion of AESVC led to mAP increases of 0.89, 1.30, and 2.34% for the easy, medium, and hard subsets, 
respectively. The enhanced performance of the model on the hard subset can be attributed to the adaptive fusion 
capability of the AESVC module. Specifically, one of the SimAM attention mechanisms implemented adaptive feature 
compensation for global and local features in both the channel and spatial dimensions. 

MSPAM. The fourth row of Table 2 shows that incorporating the MSPAM into the neck network improved the mAP 
performance by 0.96, 1.16, and 2.13 for the easy, medium, and hard subsets, respectively. Additionally, in comparison 
with the CBAM, this module achieved improvements of 0.86, 0.79, and 1.10% across the easy, medium, and hard subsets, 
respectively. The above performance improvement is due to the parallel attention structure design of the MSPAM 
module. This structure exploited dual attention to extract original features simultaneously, thus avoiding feature loss. 
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Table 2 Ablation Experiment 

Model 
Evaluation Indicators 

Easy Medium Hard Params (M) 

YOLOv5n (baseline) 92.09 90.05 80.49 1.886 

YOLOv5n+MC4f 93.73 91.94 83.79 2.351 

YOLOv5n+AESVC 92.98 91.35 82.83 2.856 

YOLOv5n+MSPAM 93.05 91.21 82.62 1.789 

YOLOv5n+CBAM 92.19 90.42 81.52 1.951 

YOLOv5n+AESVC+MC4f 93.50 91.79 83.80 3.570 

YOLOv5n+AESVC+MC4f+MSPAM 93.84 92.06 83.55 3.099 

Summary. The mAP performance of the model with all aforementioned modules included is listed in the seventh row of 
Table 2, which shows that the proposed model increased the mAP by 1.75, 2.01, and 3.06% for the easy, medium, and 
hard subsets, respectively, compared to the baseline. The number of parameters was approximately 1.5 times that of the 
original model, and the model complexity also increased. The results indicated that the proposed network model 
exhibited improvements in the detection performance of small-scale, densely packed, and occluded faces. Although the 
complexity slightly increased, it ensured a balance between a lightweight and accurate model and satisfied the 
requirements for real-time performance. 

Comparisons to the State-of-the-art 

Quantitative Results 

As shown in Table 3, this study mainly focused on balancing the enhancement of the detection accuracy for hard-to-
detect facial models with the need for a lightweight model. A detailed performance comparison analysis was conducted 
on the leading facial detection algorithms. As shown in Table 3, the size of the model was only 3.570 MB, approximately 
one fortieth of the size of the DSFD (ResNet152) model, and it increased the mAP values by 0.59 and 12.16% on the 
medium and hard subsets, respectively. Compared to the YOLO5face (YOLOv5s) model, the proposed model was half the 
size, with mAP values improved by 0.40% on the hard subsets. Compared to the advanced YOLOv7-tiny, YOLOv8n-face, 
and YOLOv8s-face algorithms, the mAP values of the proposed model on the hard subset improved by 1.45, 4.55, and 
0.45%, respectively. Although the performance of the proposed model on easy and medium subsets could be improved, 
it ensured the accuracy of hard-to-detect face prediction while being lightweight, being advantageous for lightweight 
end-terminal deployments. Furthermore, compared to YOLO5face (YOLOv5n), which has a similar lightweight, although 
the proposed model had a slightly increased parameter count, the algorithm improved the mAP values by 0.23, 0.52, and 
3.02% on the easy, medium, and hard subsets, ensuring overall facial detection performance while being lightweight.  

Therefore, the proposed model successfully addressed the challenges of achieving a high detection accuracy and a 
lightweight model for face detection. As listed in Table 3, the experimental results validated the effectiveness of the 
proposed model. Additionally, the mAP of each subset was improved and a lightweight was produced. This indicates that 
the proposed model achieved more efficient performance in resource-constrained situations. 

Table 3 Comparison Experiments of Mainstream Algorithms. 

Model 
Evaluation indicators 

Easy Medium Hard Params(M) 

YOLOv5n (baseline) 91.99 89.79 78.89 1.886 

RetinaFace (MobileNet0.25) 87.78 81.16 47.32 0.44 

YOLO5face (YOLOv5n-0.5) 90.76 88.12 73.82 0.447 

SCRFD-0.5GF 90.57 88.12 68.51 0.57 

FaceBoxes 76.17 57.17 24.18 1.01 

YOLO5face (YOLOv5n) 93.61 91.54 80.53 1.726 

YOLOv7-tiny 94.70 92.60 82.10 13.20 

YOLOv8n-face 94.50 92.20 79.00 - 

YOLOv8s-face 96.10 94.20 83.10 - 

DSFD (ResNet152) 94.29 91.47 71.39 120.06 

YOLO5face (YOLOv5s) 94.33 92.61 83.15 7.075 

Proposed Model 93.84 92.06 83.55 3.570 
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Visualisation Results 

This section presents the visualisation results to validate the effectiveness of the proposed model. Visual detection 
outcomes were assessed on the wider face dataset using the baseline and YOLO5face (YOLOv5s) models, and the 
proposed model. Notably, the dataset contained multi-face, occluded-face, and blurred-face images. In the detection 
results in Figure 6, the first column displays the baseline detection outcomes, the second column shows results from the 
YOLO5face model, and the third column presents results from the proposed model. 

1. Results for dense multi-face images 
As can be seen from Figure 6, the proposed model achieved satisfactory results for the wider face dataset. In Figure 6(A), 
a visual comparison between YOLO5face and the proposed model shows that the YOLO5face algorithm had a false 
detection, which is marked by an orange "×". The proposed model avoided the false detection problem in the case of 
dense multi-face detection. In addition, it improved the detection confidence of occluded faces. 

Figure 6(B) shows denser faces. The proposed algorithm still achieved satisfactory detection results for multi-face 
detection. Although the confidence was slightly lower than that of YOLO5face, the proposed model accurately detected 
small-occluded faces that were missed by the baseline and YOLO5face models. The missed face is marked with a red circle. 
This shows that when dealing with multi-face detection tasks, the proposed model maintained excellent performance and 
robustness. 

 

 Dense multi-face image results. 

2. Results for occluded face images 
The two photographs in Figure 7 primarily include occluded face features. Blurred and occluded faces in the two groups 
of pictures are marked in yellow boxes. As shown in Figure 7(A) and 7(B), the confidence of the proposed model in 
detecting blurred faces was better than that of the baseline and YOLO5face (YOLOv5s) models. This result proves that the 
proposed model had a positive effect on the detection of occluded faces. This proves that the proposed model adapted 
to face detection challenges under various complex conditions. 
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 Occluded face image results. 

3. Results for blurred face images 
The two photographs in Figure 8 were mainly used to test the performance of blurred face detection. In Figure 8 (A), the 
confidence of the proposed model for the blurred faces marked by the yellow frames was higher than that of the baseline 
and YOLO5face (YOLOv5s) models. In Figure 8 (B), the baseline model only detected nine faces, while the proposed model 
and YOLO5face detected 13 faces. Faces missed at the baseline model are marked with red circles. In addition, for the 
detection of blurred small-scale faces, the detection confidence of the proposed model was better than that of 
YOLO5face. Blurred faces are marked with yellow boxes. 

 

 Blurred small-scale face image results. 

Through the experimental visualisation comparison, the proposed model not only achieved the positioning of key points 
of facial features but also validated the adaptability to the challenges of face detection under various complex conditions. 

Real-time performance 

Real-time testing is typically used to verify the response speed and processing capability of a model in practical 
applications to ensure that the model can complete tasks within a specified time and satisfy real-time performance 
requirements. This is particularly critical in tasks such as face detection, where real-time performance is crucial. 

As listed in Table 4, the proposed model was compared with the mainstream YOLO models. The proposed model took 
26.79 ms to process a single image, which was 5.12 ms faster than YOLO5face (YOLOv5s) and 0.16 ms faster than YOLOv7-
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tiny. This further validates that the proposed model improves the detection accuracy while ensuring lightweight design 
and real-time performance. Although the number of parameters of the proposed model is slightly higher than that of the 
baseline, YOLO5face (YOLOv5n), and YOLO5face (YOLOv5n-0.5), the real-time performance of the model still maintained 
a favorable level. This is due to the residual structure in the MC4f module. The existence of this structure allowed running 
deeper networks without increasing the gradient, so the calculation efficiency was higher while the parameters increase. 

Table 4 Comparison of the performance and detection speed of detection models. 

Model Detection Speed (ms） Params(M) 

YOLOv5n(baseline) 20.10  1.886 
YOLO5face (YOLOv5n-0.5) 26.11 0.45 

YOLOv7-tiny 26.95 13.20 
YOLOv8n-face 26.07 - 

YOLO5face (YOLOv5n) 24.93 1.73 
YOLO5face (YOLOv5s) 31.91 7.06 

Proposed Model 26.79 3.57 

Limitations and future work 

The proposed model addressed the shortcomings of conventional algorithms in detecting occluded faces and indistinct 
small-scale faces. However, its detection ability was slightly insufficient under the following conditions: (1) Under 
extremely low-light or high-noise conditions, the face details were lost, making it difficult for the model to extract effective 
facial features. (2) When the target was in an extreme pose for face detection, false detection and missed detection 
occurred. To address these issues, we will conduct research from the following two aspects in future work: (1) By jointly 
training the super-resolution network and the face detector, the detection accuracy of the model can be improved in low-
light and high-noise scenes. This will effectively solve the problem of loss of facial details.(2) By training a data 
augmentation model based on 3D face reconstruction, the limited 2D face data is converted into 3D representation. This 
approach will enhance the diversity of training samples by incorporating extreme pose variations, thereby improving the 
robustness of face detection under challenging pose conditions. 

Conclusion 

In this study, a lightweight adaptive fusion model was presented for detecting small-scale faces. First, the backbone of 
YOLOv5n was reconstructed using MC4f to address various problems that lightweight and deep linear networks may 
encounter, such as exploding or disappearing gradients. Second, the AESVC module adaptively integrated features from 
multiple regions of an image, thereby improving the expressive ability of the model in complex tasks. Third, the MSPAM 
was proposed which aimed to improve the integration of facial features across different scales while concurrently 
minimising the degradation of superficial features.    b    g w  g   ss w  h α-Ciou achieved facial key point localisation, 
more accurately aligned facial images, effectively balanced easy and difficult samples, and improved the localisation 
accuracy of small-scale faces. Experiments showed that the proposed model improved the mAP on the hard subset while 
maintaining a lightweight model. This solved the problem of the missed detection of occluded faces and blurry small-scale 
faces that exist in traditional algorithms.  

In the field of intelligent security monitoring, the ability of security systems to identify people with obstructions and 
distant blurred faces improves social security. In addition, in the field of driver monitoring, particularly when the face of 
a driver is obstructed or blurred owing to low light, rain, or other factors, maintaining high-precision detection can 
effectively ensure the safety of public transportation and drivers. However, in extreme environments, the robustness of 
detection requires improvement. In the future, image enhancement techniques could be utilised to improve image quality 
before initiating the primary detection phase, adapt to missing feature extraction in extreme scenes, and improve 
applicability across various environments. 
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