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Abstract 

This paper outlines an optimized propeller design for an unmanned aerial vehicle (UAV) employing a Kriging surrogate model-
based optimization approach. The primary objective was to maximize propeller efficiency while adhering to the thrust-to-
torque ratio constraint at a rotational speed of 6,500 rpm. The design variables encompassed the twist angle and the ratio 
of blade thickness to chord length across the twenty-section airfoil of the propeller. A comprehensive analysis was conducted 
using computational fluid dynamics to assess the aerodynamics of the propeller. The Kriging surrogate model serves as a 
valuable tool for approximating objective and constraint functions. The optimal Latin hypercube sampling technique was 
employed for design of experiment, generating a set of sampling points to construct a Kriging surrogate model. To tackle the 
optimization problem, seven metaheuristic optimizers were employed, including a genetic algorithm, particle swarm 
optimization, population-based incremental learning, differential evolution, teaching-learning based optimization, ant 
colony optimization, and an evolution strategy with covariance matrix adaptation. The obtained results revealed that Kriging 
surrogate model-based differential evolution optimization stood out as the most efficient method for addressing the 
propeller optimization problem. The propeller efficiency experienced improvement of approximately 0.6% compared to the 
maximum result obtained from the sampling points.  

Keywords: meta model; optimal design; optimization; propeller; surrogate model. 

 

Introduction 

Unmanned aerial vehicles (UAVs) are widely used in various applications nowadays, such as military, coastal 
guard, survey, agriculture, etc. [1, 2], since UAVs do not require a human pilot on board. This is advantageous 
for most flight missions, particularly for dangerous missions [3]. The design of a UAV concerns several aspects 
such as maximizing flight performance, minimizing energy consumption, etc. [4-6]. For the energy consumption 
aspect, design optimization of the propeller is an interesting topic to improve UAV performance, while the 
objective functions considered are for example maximizing power output or thrust [7-9], etc. [10, 11]. The design 
variables considered were for example blade pitch, chord length, thickness, blade span, number of blades, blade 
angle of attack, and airfoil profiles [9-12]. 

The optimum design of a propeller or other engineering problems are usually based on metaheuristic optimizers 
(MHOs) since the objective functions and constraints imposed are usually evaluated by means of numerical 
simulation to which, sometimes, conventional gradient-based optimizers may not be suitably applied due to the 
difficulty of function gradient approximation. Compared to gradient-based optimizers, MHOs have some 
advantages, such as no requirement of function derivatives, global optimization, and being able to explore a 
Pareto front within a single run for the case of multi-objective optimization. As a result, they can deal with almost 
any kind of function and design variable. Some of the various kinds of function and design variables are: 
engineering economics optimization [13], heat exchanger design [14-16], sterling engine and fuel cell hybrid 
optimization [17, 18], an automobile suspension arm [19], etc. However, it is well known that MHOs have some 
disadvantages, such as slow convergence rate and inconsistency. Consequently, performing optimization using 
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MHOs usually requires numerous function evaluations. Therefore, the optimum design of a propeller or other 
engineering problems are mostly carried out based on low-fidelity simulation such as blade element momentum 
theory (BEM) [11] or a vortex lattice method (VLM) [20, 21], while the implemented MHOs include a genetic 
algorithm (GA) [11], particle swarm optimization (PSO) [22], differential evolution (DE) [23], etc. 

Recently, high-fidelity computation such as computational fluid dynamics (CFD) has become a popular tool in 
the field of fluid flow analysis [1,24-27], which also includes propeller design [28-32], as it is more accurate and 
more suitable for various simulation conditions than BEM and VLM. Moreover, it is known to produce results 
that are as accurate as those from wind tunnel testing [33, 34]. However, due to its expensive computation 
requirements, it is almost impossible to perform MH optimization based on the CFD directly. The use of 
surrogate-assisted MHOs is a solution for such problems. The main idea of using surrogate-assisted MHOs is that 
a high-fidelity simulation based on CFD is performed for some training points in the design domain, while the 
points are generated by means of design of experiment (DoE). Then, a surrogate model is constructed based on 
the design training points, which is used for function approximation while performing optimization is done using 
MHOs. After the optimum points are obtained, their actual function values are evaluated using a high-fidelity 
simulation. This technique can reduce computational cost and has been successfully applied in various 
optimization problems. For propeller optimization, several surrogate models have been applied, e.g., response 
surface model (RSM) [35], radial basis function model (RBF) [36], Kriging model (KG) [37], etc. [38], while the 
used MHOs are mostly based on classical algorithms such as GA [37, 39], DE [28], or PSO [22]. Arguably the most 
used DoE is the Latin hypercube sampling (LHS) technique. In fact, the quality of the optimum solution obtained 
from using surrogate-assisted MHOs depends on three main factors: the surrogate model technique, the MH 
algorithm, and the DoE technique. Among several surrogate model techniques, KG is one of the most popular 
methods due to its superiority in prediction accuracy [37, 40, 41]. However, performance investigation of using 
a KG surrogate model with several MH techniques for optimization of UAV propellers was not found in the 
literature. In addition, applying an optimum Latin hypercube sampling technique (OLHS), which has been found 
to have better space filling in the design domain than the original LHS, has rarely been done for such a design 
problem.   

Therefore, this work presents a propeller design for an UAV using a KG surrogate model, while seven MH 
algorithms were implemented. The design problem was posed to maximize the propeller efficiency while the 
design variables were the twist angle and the ratio of blade thickness to chord length of a twenty airfoil sections. 
CFD analysis was used for high-fidelity aerodynamics simulation of the propeller. The KG surrogate model was 
used as the surrogate model, while an OLHS proposed by Pholdee and Bureerat in [42] was used as the DoE 
technique. Several MH optimizers, including GA [43], PSO [44], population-based incremental learning (PBIL) 
[45], DE [46], teaching-learning based optimization (TLBO) [47], ant colony optimization (ACO) [48], and an 
evolution strategy with covariance matrix adaptation (CMA-ES) [49], were used to solve the proposed problem 
and their performances were investigated.  

Formulation for Optimization Problem 

Optimization Problem 

In this work, the design problem proposed was the optimization of a two-blade propeller for an UAV at a motor 
speed of 6,500 rpm. The design problem was posed to maximize the propeller efficiency while the design 
variables were the twist angles and the ratio of blade thickness to chord length of twenty airfoil sections. To 
maximize the propeller efficiency, an objective function can be expressed by minimizing ratio of thrust to torque 
as follows: 

 𝑓(𝑥) [
𝑇−𝑇𝑚𝑎𝑥

𝑄−𝑄𝑚𝑖𝑛
]
𝑚𝑖𝑛

  (1) 

subjected to −12.5% ≤ 𝜃 ≤ 12.5%, 0.12 ≤
𝑡

𝐶
≤ 0.13 

where 𝑥 = {𝜃,
𝑡

𝐶
} is a set of design parameters including the twist angles and the ratio of propeller thickness to 

chord length, respectively. 𝑇and 𝑄 are the thrust and the rotation torque, respectively. 𝑇𝑚𝑎𝑥and 𝑄𝑚𝑖𝑛 are the 
maximum thrust and the minimum torque obtained from DoE. It should be noted that the twist angles and chord 



406                                                                                                                                 Nantiwat Pholdee et al. 

 

   

 

length were used to form the propeller profile of APC Thin Electric 9×6 [50] to modify the design value. While 
the maximal relative thickness of the propeller was extended to cover the bound from the study of Kovačević 
[39]. 

Aerodynamics Analysis of Propeller 

To analyse the propeller aerodynamics, the CFD code under the commercial software ANSYS/Fluent was used. 
As illustrated in Figure 1, the CFD model was defined by a stationary domain of a 10D cube, while the rotating 
domain was set to 1.1D dimeter, where D represents a propeller diameter of 228.6 mm. Here, the CFD simulation 
created a sufficiently enlarged domain to reduce the turbulent flow influence of air around the rotating 
propeller. The fluid properties used an air density and a viscosity of 1.225 kg/m3 and 1.7894x10-5 kg/m-s, 
respectively, while Reynolds-averaged Navier–Stokes (RANS) with the Realizable 𝑘 − 𝜀 turbulence model was 
used for steady state flow simulation. The simulation domains consisted of the two domains between the 
stationary domain and the rotating domain with a moving reference frame of 6500 rpm, while the connection 

of both domains used the mesh interface option.  

 

 CFD domain analysis. 

The boundary conditions were defined at the inlet wall and outlet wall as outflow. The propeller was assigned 
as a moving wall and the other wall as a stationary wall. The coupled scheme algorithm was used to solve the 
velocity-pressure coupling in the numerical analysis. The second-order upwind technique was applied to set the 
pressure, momentum, turbulent kinetic energy, and turbulent dissipation rates. The iteration calculation was 
defined the residual values of 10-5. 

The grid/mesh model was generated based on a tetrahedron construction to fit the propeller shape, while the 
first layer thickness was defined with a height of 1x10-5 m and twenty-five layers were defined for the propeller 
surface as illustrated in Figure 2. The mesh quality validation was performed to compare the results of propeller 
efficiency, which modified the mesh density on CFD calculations as illustrated in Figure 3. The mesh density is 
presented ranging from 1.2 to 4.4 million elements to find the minimum uncertainty of the CFD results.  

 

 Mesh construction of CFD analysis. 

Inlet Outlet

Rotating domain
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 Meshing validation of CFD uncertainty. 

In addition, the CFD analysis was verified with the experimental results of thrust, torque, and propeller 
efficiency, as illustrated in Figure 4-6, respectively. This CFD verification used the propeller model of 
RCbenchmark × Xoar 9 × 4 and the experimental results from the Tyto Robotics Database [51]. The results 
between the CFD analysis and the experiment were compared at a propeller speed from 3,849 to 9,333 rpm. 
The thrust and the torque revealed that the CFD simulation produced slightly higher calculation values than the 
test results. However, the trends of both the CFD and the experimental results were similar, which means the 
optimum results from CFD should also agree well with the experimental results. In addition, under the results of 
thrust and torque as illustrated in Figures 4 and 5, the propeller efficiency was calculated as follows:  

 𝜂𝑝 =
𝑇

𝑄𝜔
  (2) 

where 𝜂𝑝 is the propeller efficiency and 𝜔 is the rotating speed. The results of propeller efficiency calculated 

from Eq. (2) are illustrated in Figure 6. The comparison results between the CFD analysis and the experiment of 
propeller efficiency confirmed that the numerical simulation for rotor aerodynamics was acceptable. The 
average error was 7.5% for the speed range of 3,849 to 9,333 rpm. Thus, this work used CFD to analyse the 
aerodynamics of the rotating propeller at 6,500 rpm, i.e., numerical results with error lower than 10%.  

 

 CFD validation with thrust result. 
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 CFD validation with torque result. 

 

 CFD validation with propeller efficiency. 

Kriging Surrogate Model-Assisted Optimization 

Conventional surrogate-assisted optimization consisted of three main steps i.e., 1) generating a set of sampling 
points based on DoE and evaluating their real function values; 2) constructing a surrogate model based on the 
sampling points; 3) performing optimization based on the constructed surrogate model. Finally, the optimum 
solution obtained was verified again with the real objective function (CFD simulation). In this work, nine sampling 
points were generated first, based on the OLHS scheme developed by Pholdee and Bureerat in [42]. The CFD 
was used to verify their objective function values. The KG surrogate model was then constructed based on the 
set of sampling points. The KG approximation function can be expressed as follows [52]: 

 𝐹(𝑥) = 𝜇𝑇−1(𝑓 − 𝜇𝑚𝑖𝑛())𝑚𝑖𝑛    (3) 

where, 𝐹(𝑥) is the predicted function required at a given point 𝑥, while 𝑦 is the correlation matrix of the 
sampling points and 𝑥; 𝛹 is correlation matrix for all the sampling points, and 1 is a vector full of ones. The 
variable 𝜇𝑚𝑖𝑛 is expressed as: 

 𝜇
1𝑇𝛹1𝑓

1𝑇𝛹11𝑚𝑖𝑛
  (4) 

where 𝑓 is the vector of function values of the sampling points. The KG model used in this study was based the 

MATLAB toolbox DACE [53], while a Gaussian correlation function was used [54]. 

Seven well-known MHOs, i.e., GA [43], PSO [44], PBIL [45], DE [46], TLBO [47], ACO [48], and CMA-ES [49], were 
used to solve the design problem based on the constructed KG model, with five independent runs. After the 
optimum results were obtained, the CFD was used for their real function evaluation. The results obtained from 
the various MHOs are discussed below. The overall framework of this study is illustrated in Figure 7. 
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 Flow chart of methodology. 

Results and Discussion 

The results after performing OLHS to generate nine sampling points and evaluating their objective function 
values based on CFD are reported in Table 1. The minimum and maximum thrusts are given by sampling numbers 
3 (Sampling 3) and 1 (Sampling 1), respectively, while the minimum and maximum torques are also given by 
sampling numbers 3 and 1. It is shown that the set of design variables that gives a lower thrust tends to have a 
lower torque while, on other hand, the set of design variables that gives a higher thrust lead to a higher torque. 
Among the 9 sampling points, the maximum propeller efficiency was 9.9915 gf/W, which is given by sampling 
solution number 3.  

Table 1 DoE and CFD analysis. 

Parameters 
DoE CFD 

𝜽(%) 
𝒕

𝑪
 𝑻(𝒌𝒈𝒇) 𝑸(𝑵𝒎) 𝜼𝒑 (

𝒈𝒇

𝒘
) 

Sampling 1 11.9222 0.1247 0.4873 0.0886 8.0778 

Sampling 2 -5.5556 0.1231 0.4444 0.0681 9.5816 

Sampling 3 -11.7452 0.1237 0.4282 0.0630 9.9915 

Sampling 4 8.3333 0.1260 0.4814 0.0853 8.2884 

Sampling 5 -8.4565 0.1283 0.4390 0.0663 9.7328 

Sampling 6 0.0770 0.1214 0.4607 0.0758 8.9273 

Sampling 7 2.7778 0.1276 0.4688 0.0787 8.7514 

Sampling 8 -2.7778 0.1294 0.4559 0.0722 9.2811 

Sampling 9 5.4642 0.1202 0.4740 0.0821 8.4862 

After constructing the KG model based on the nine sampling points and performing five optimization runs using 
the seven MHOs, the optimum results obtained are reported in Table 2. From the table, the minimum objective 
function values were produced by GA while the maximum objective function values were produced by PSO. 

Table 3 illustrates the CFD results of the best run of each MH. From the table, the maximum thrust and minimum 
torque were produced by DE and PSO, respectively. However, the best propeller efficiency was produced by DE, 
i.e., 10.0466 gf/W. Thus, the optimal design of a UAV propeller using KG-DE led to increased propeller efficiency 
by approximately 0.6% compared to the maximum result of the sampling points (Sampling 3). 
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The pressure plot of the optimal design of the UAV propeller obtained from KG surrogate model-assisted DE is 
illustrated in Figure 8. Three airfoil sections at the r/R positions of 0.25, 0.50, and 0.75, as shown in Figure 8(a), 
were selected to show the pressure acting on the ZX plane by referencing the Z coordinate, as illustrated in 
Figure 8(b). From Figure 8(b), the r/R position of 0.25 on the airfoil section showed the minimum pressure 
difference between the pressure side and the suction side compared to that at an r/R position of 0.50 and 0.75, 
while the maximum pressure difference was 0.75.  

Table 2 Optimum solution obtained based on KG surrogate-assisted optimizations. 

KG-optimizations Run 𝜽(%) 
𝒕

𝑪
 𝒇(𝒙)𝒎𝒊𝒏 

GA 

1 -11.494 0.1269 -7.37E+08 

2 -11.442 0.1209 -1.64E+07 

3 -11.655 0.123 -2.85E+08 

4 -11.38 0.1295 -3.10E+09 

5 -11.54 0.1223 -5.67E+08 

PSO 

1 -11.4136 0.1202 -1.31E+04 

2 -11.4673 0.1276 -1.80E+05 

3 -11.6383 0.1251 -1.27E+04 

4 -11.5274 0.1224 -3.07E+04 

5 -11.442 0.1284 -1.16E+05 

PBIL 

1 -11.6202 0.1255 -8.51E+04 

2 -11.4492 0.1283 -3.42E+05 

3 -11.4492 0.1281 -7.00E+04 

4 -11.5958 0.1227 -4.79E+05 

5 -11.6447 0.1229 -1.51E+06 

DE 

1 -11.3871 0.1294 -5.21E+05 

2 -11.3416 0.13 -5.23E+05 

3 -11.5699 0.1225 -3.70E+05 

4 -11.4448 0.1204 -1.05E+05 

5 -11.6652 0.1252 -4.60E+05 

TLBO 

1 -11.4332 0.1209 -6.37E+04 

2 -11.4245 0.1288 -6.71E+05 

3 -11.4608 0.1217 -1.79E+05 

4 -11.459 0.12 -3.21E+05 

5 -11.4862 0.127 -1.64E+05 

ACO 

1 -11.3734 0.1296 -1.78E+05 

2 -11.4409 0.1211 -3.36E+05 

3 -11.4614 0.1216 -1.11E+06 

4 -11.4597 0.12 -5.48E+05 

5 -11.4435 0.1212 -2.65E+07 

CMA-ES 

1 -11.6949 0.125 -3.63E+05 

2 -11.4496 0.1214 -2.56 E+05 

3 -11.7336 0.1236 -7.70E+05 

4 -11.6964 0.125 -2.25E+07 

5 -11.6957 0.125 -7.92E+05 

Table 3 Best results of each KG surrogate based-on optimizations using CFD verification. 

Parameters 
Optimal results CFD 

𝜽(%) 
𝒕

𝑪
 𝑻(𝒌𝒈𝒇) 𝑸(𝑵𝒎) 𝜼𝒑 (

𝒈𝒇

𝒘
) 

GA -11.38 0.1295 0.4315 0.0631 10.0435 

PSO -11.467 0.1276 0.4309 0.0630 10.0419 

PBIL -11.644 0.1229 0.4302 0.0633 9.9830 

DE -11.341 0.13 0.4319 0.0632 10.0466 

TLBO -11.424 0.1288 0.4304 0.0632 9.9986 

ACO -11.443 0.1212 0.4286 0.0632 9.9692 

CMA-ES -11.696 0.125 0.4303 0.0634 9.9697 
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(a) (b) 

 Surface pressure plot: (a) position of airfoil section, (b) pressure plot at ZX plane. 

Conclusions 

In this work, KG-surrogate-assisted MHOs were successfully applied for UAV propeller optimization. The design 
problem was defined to maximize the propeller efficiency subject to the ratio of thrust to torque at a rotating 
speed of 6,500 rpm. The twist angles and the ratio of blade thickness to chord length on the twenty airfoil 
sections of a propeller were considered as the design parameters. CFD was used to analyze the aerodynamics of 
the propeller, while the KG model was applied for objective and constraint function approximation. An OLHS 
technique was used for design of experiment to generate a set of sampling points for constructing the KG model. 
Several MHOs were applied while their performances were investigated. The results demonstrated that KG-DE 
is the most efficient method for solving propeller optimization problems. The optimal design presented a 
propeller efficiency that increased by about 0.6% compared with the maximum result of the best sampling point. 

In future work, improving the surrogate-assisted MHO method by applying an infill sampling method and/or 
using hybrid surrogate models as well as multi-fidelity modelling will be studied.  
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