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Abstract 

Driver fatigue is the primary factor contributing to traffic accidents globally. To address this challenge, the electroencephalogram 
(EEG) has been proven reliable for assessing sleepiness, fatigue, and performance levels. Although alertness monitoring through EEG 
analysis has shown progress, its use is affected by complicated methods of collecting data and labelling more than two classes. Based 
on previous research, the original form of EEG signals or power spectral density (PSD) has been extensively applied to detect driver 
fatigue. This method needs a large, deep neural network to produce valuable features, requiring significant computational training 
resources. More observations regarding feature extraction and classification models are needed to reduce computational cost and 
optimize accuracy values. Therefore, this research aimed to propose a PSD-based feature optimization on a lightweight convolutional 
neural network (CNN) model. Five types of statistical functions and four types of signal power ratios were applied, and the best 
features were selected based on ranking algorithms. The results showed that feature optimization using the Relief Feature (ReliefF) 
algorithm had the highest accuracy. The proposed lightweight CNN model obtained an average intra-subject accuracy of 71.01%, 
while the cross-subject accuracy was 69.07%. 
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Introduction 

Approximately 1.3 million individuals are perishing annually in global traffic accidents, while the number of injuries ranges 
between 20 and 50 million. Therefore, the International Status Report on Road Safety has examined road safety 
conditions in 178 nations using survey data (WHO, 2022). Based on the WHO report, injury-related deaths constitute the 
primary cause of mortality for individuals between the ages of 5 and 29. This suggests that traffic injuries persist as a 
substantial public health issue, which is prevalent in low and upper-middle-income nations, such as China. From 2016 to 
2019, there has been a substantial rise in the frequency of traffic collisions and fatalities in China, with 256,101 injuries 
and 62,763 deaths recorded in 2019 (Statista, 2023). Consequently, drivers using these routes must exercise extra caution 
and adhere to safety measures. 

Previous research reported that specific trends occurred in 2022 about the causes of accidents. The predominant 
elements contributing to these accidents are drowsiness, distracted driving, alcohol-related incidents, and excessive 
speeding (Kaur & Sobti, 2018; Rahman et al., 2020; Raveena et al., 2020; Song et al., 2019). The speed of a vehicle is a 
crucial factor in determining the extent of damage caused by a collision. However, driving at high velocity does not 
invariably entail risk if the driver is dependable (Alasmari et al., 2023; Q. Liu et al., 2021; Pranoto et al., 2023). Ensuring 
road safety includes determining the appropriate speed limit based on the conditions of the driver and the car. Insufficient 
driver alertness hampers the ability to react promptly and avert a catastrophe while driving at high velocities. 
Furthermore, increased distractions and speed significantly amplify the risk of an accident or collision, leading to severe 
damage or fatality. To address this risk, the Advanced Driver Assistance System (ADAS) has been designed as a current 
and future in-vehicle technological system aimed at improving driving safety (Cicchino, 2017; Nandavar et al., 2023; Spicer 
et al., 2018).  
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ADAS can effectively decrease the probability of a collision and mitigate the extent of injuries sustained in the event of a 
crash. According to (Phan et al., 2023; Xu et al., 2023), forward collision warning systems yielded a 27% decrease in front-
to-rear crashes, and autonomous emergency braking systems with low-speed capabilities caused a 43% reduction. The 
results showed that using automated emergency braking systems operating at low speeds and systems could decrease 
front-to-rear collisions by half. (L. Yue et al., 2018) discovered that methods for warning of forward collisions caused a 
35% reduction in accidents during foggy conditions. This showed the significance of enhancing ADAS technology in society, 
demonstrating the favorable influence of ADAS-equipped automobiles on road safety. However, most ADAS that rely on 
visual detection often use cameras. This suggests the inability to immediately anticipate the cognitive and mental state 
of the driver, leading to a delay in system response. 

Compared to ADAS, an Electroencephalogram (EEG) is a highly effective device for monitoring the status of a driver. It 
directly measures cognitive abilities and mental state by capturing signals from the human brain (Li et al., 2022; Romahadi 
et al., 2024; Xia et al., 2023; Zhang et al., 2023). Furthermore, the high temporal resolution enhances the EEG signals to 
capture neural activity in the driver's brain. Chen et al. (Chen et al., 2024) used spectral graph convolutional networks to 
diagnose mental weariness. (Y. Yang et al., 2021) proposed a new comprehensive learning system based on a large deep 
convolutional neural network (CNN) to detect fatigue using EEG. (Feng et al., 2025) also proposed a pseudo-label-assisted 
subdomain adaptation network with coordinated attention for detecting driver fatigue based on EEG. Several 
investigations use the deep learning method and Power Spectral Density (PSD) feature for fatigue detection (Apicella et 
al., 2022; Chen et al., 2021; Jantan et al., 2022). However, previous research has fully used spectral domain features 
without eliminating redundant features. Complex CNN models have also been applied to overcome feature redundancy, 
increasing the computational cost. Therefore, this research aimed to implement a lightweight CNN architecture to classify 
multi-class driver fatigue. The EEG was transformed into PSD, followed by a statistical method to diminish the feature 
dimensionality. A total of two feature ranking algorithms, Chi-square and Relief feature (ReliefF), were used to identify 
significant features. This study also proposed a classification method that used a lightweight CNN model and effectively 
reduced several redundant features, serving as a suitable option for real-world applications. 

Materials and Methods 

The process of determining the state of alertness using EEG data consists of four distinct stages and primarily relies on 
the CNN model. First, the raw EEG data passes through the pre-processing stage that tries to eliminate noise in the original 
signals. These signals are standardized to mitigate the impact of variances in magnitude and range of values across distinct 
measurements. Second, statistical combinations of Power Spectral Densities (PSDs) are extracted from different 
frequency bands. Third, feature augmentation is implemented using the Synthetic Minority Over-sampling Technique 
(SMOTE) method. Fourth, a feature selection algorithm is used to reduce the importance of irrelevant variables. Feature 
selection entails using the Chi-square and ReliefF algorithm methods, specifically developed to enhance classification 
accuracy and reduce learning time. 

Dataset 

Comprehensive experiments are conducted on publicly available datasets to assess the efficacy of the proposed method. 
The SEED-VIG dataset, which consists of EEG data collected during driving tasks, is a locally shared proprietary dataset. 
Zheng and Lu developed and provided the SEED-VIG data (Zheng & Lu, 2017). Using a driving simulation platform, the 
dataset includes EEG, electrooculogram (EOG), and eye movement data from 23 participants. A road scene is depicted on 
a liquid crystal display (LCD) screen before the modified vehicle, showing real-life conditions, as presented in Figure 1. 
The driving simulation uses virtual reality technology to recreate a variety of vehicles, weather conditions, and road 
arrangements, as shown in Figure 1. Neuroscan technology is synchronized to record forehead EOG, EEG, eye movements, 
and eye-tracking glasses. Driving simulation examinations are conducted on physical cars whose engines and other 
extraneous components have been removed. The participants were instructed to operate the vehicle, applying pressure 
to the gas pedal and steering wheel during the test. The driving scenario was updated simultaneously according to the 
actions performed by the participants without receiving any warning feedback after sleep.  
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 Driving simulation scenarios. 

 

 Placement of electrodes for EEG measurement. 

The participants were instructed to operate the vehicle, applying pressure to the gas pedal and steering wheel during the 
test. The driving scenario was updated simultaneously according to the actions performed by the participants without 
receiving any warning feedback after sleep. The linear and repetitive nature of the testing environment causes fatigue or 
sleepiness. The Neuroscan ESI measurement equipment can obtain EEG and EOG signals at a sampling rate of 1000 Hz. 
The EEG cap consists of a total of 64 electrodes, which are strategically placed on the scalp according to the internationally 
recognized 10-20 system. The EEG function in this study recorded 17 EEG channels, consisting of 11 posterior EEG 
channels and 6 temporal EEG channels. Posterior EEG channels include 'FT7', 'FT8', 'T7', 'T8', 'TP7', 'TP8', 'CP1', 'CP2', 'P1', 
'PZ', 'P2', 'PO3', 'POZ', 'PO4', 'O1', 'OZ', and 'O2' as shown in Figure 2. Additionally, the dataset includes a 4-channel 
forehead EOG for further analysis. 
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EEG signals from 11 channels were recorded in the posterior region marked in yellow, while signals from 6 channels were 
in temporal locations shown in blue. SMI Eye Tracking Glasses 2 has an infrared camera capable of capturing eye gaze and 
various eye movements such as eye blinks (CLOS), saccades, and fixations. The labels assigned to the data set correspond 
to the PERCLOS (Percentage of Eyelid Closure) levels observed by the eye tracker, as indicated by Eq. (1). 
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Table 1 The dataset used in this study. 

Filenames 
Subject 
Number 

Number of Samples 

Awake Tired Drowsy 

'5_20151012_night.mat' S05 422 304 159 
'7_20151015_night.mat' S07 98 753 34 
'9_20151017_night.mat' S09 208 636 41 

'11_20151024_night.mat' S11 324 545 16 
'14_20151014_night.mat' S14 225 464 196 
'15_20151126_night.mat' S15 289 525 71 
'16_20151128_night.mat' S16 202 177 506 
'20_20151129_night.mat' S20 625 50 210 

Total  2393 3454 1233 

Furthermore, participants were classified as awake when their PERCLOS value was less than 0.35 and considered sleepy 
when their value exceeded 0.7. Several participants, particularly between 0.35 and 0.7, showed signs of fatigue through 
annotations. 

The driving task was completed with 23 participants in the study, although some reports lacked sufficient or complete 
data on specific psychological problems. Certain participants demonstrated inadequate sampling of driving conditions, 
leading to significant data imbalance and limited effects. Therefore, samples considered for use in this experiment were 
obtained at night. In addition to increasing the efficiency of signal processing time, the sample size that had complete 
classes only in the night experiment was measured from eight participants. The aggregate for each selected participant 
consisted of 2393 awake, 3454 fatigue, and 1233 drowsy segments. The overall sample size for the six participants 
consisted of 7080 segments, as shown in Table 1. The EEG sample of one participant is contained in one file, with a number 
indicating each name before the filename. 

Preprocessing of Raw EEG 

The classification was implemented on a 64-bit Windows 11 operating system, an RTX 4080 super graphics processing 
unit, and a 14th-generation Intel Core i9 central processing unit. Calculations were carried out using MATLAB software 
version 2023b. EOG signals present in the unprocessed EEG data were ignored. Raw EEG data were processed using a 
band-pass filter ranging from 1-75 Hz to exclude extraneous signals that did not originate from the brain. A bandpass filter 
with a 1 – 75 Hz frequency range was used. A notch filter removed signals with a frequency of 50 Hz originating from an 
electric current. Subsequently, the average EEG signal across electrodes was calculated and applied to each time point 
from the signal at every electrode. This effort aimed to produce a reference characterized by a lack of noise or electrical 
charge. Fundamental signal modifications were performed to reduce the influence of significant variance in the EEG signal 
that exceeded acceptable thresholds. The EEG signal was passed through baseline correction by subtraction of the 
baseline period average value of each time point at the baseline and post-stimulus intervals. 
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 FastICA algorithm. 

The EEG signal has been pre-filtered to remove extraneous noise. However, internal artifacts originating from the 
individual, such as eye blinks, heartbeats, and muscle movements, have not been filtered out (Jiang et al., 2019; Khatun 
et al., 2016). Artifact filtering is essential to effectively remove unwanted noise from EEG data. Independent Component 
Analysis (ICA) characterizes the components that make up the EEG signal. In this research, the FastICA method was used 
(M. Yue et al., 2022), with the computation stages shown in Figure 3. FastICA is derived from optimizing the components' 
non-Gaussianity, quantifying their statistical independence. The algorithm is renowned for its superior efficiency and 
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rapidity compared to alternative ICA. In the process of centering, the average value is subtracted from each variable to 
ensure that the data has a mean of zero. During the whitening process, the data is altered for the different components 
to become uncorrelated and have a variance of one. The eigenvalue decomposition to determine the variance in the 
concentrated data yields the values E and D. This process is often carried out using Principal Component Analysis (PCA). 
Popular options include kurtosis or negentropy when selecting a measure of non-Gaussianity due to its greater resilience. 
Subsequently, an iterative fixed-point method is used to optimize the selected non-Gaussian metric. The Independent 
Component Label (ICLabel) method will identify components that do not originate from the brain (Pion-Tonachini et al., 
2019). Once the EEG signal is effectively free of any artifacts, it is divided into segments of eight seconds duration. 

Feature Extraction 

After the noise and artifact cleaning process, EEG signals are decomposed into five types of brain frequencies, including 
delta (1–3 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta (13 –30 Hz), and gamma (31–75 Hz) using finite impulse response 
(FIR) filtering function. This is followed by Welch's method to convert brain signals from the temporal to the frequency 
domain (Gupta et al., 2021; S. Liu et al., 2023). For a continuous signal over time, the PSD present for the stationary 
process must be determined. This explains how the amplitude or time series of the signal is distributed over the frequency. 
Moreover, the amplitude represents either the actual physical power or, more commonly used to conveniently describe 
abstract signals characterized by the square value. Eq. (2) is the main formula for calculating PSD (Gupta et al., 2021; S. 
Liu et al., 2023). 

 𝑆(𝑒𝑗𝑤) =
1

2𝜋𝑁
|∑ 𝑥𝑛𝑒−𝑗𝑤𝑛𝑁

𝑛=1 |
2

                             (2) 

Finite time series with 1 ≤ 𝑛 ≤ 𝑁, for example, data collected at periodic intervals 𝑥𝑛 = 𝑥(𝑛𝛥𝑡), up to the end of the 
measurement term 𝑇 = 𝑁𝛥𝑡. generalize the definition of PSD straightforwardly. Statistical functions and four types of 
energy bands are applied to Welch's computational results. These statistical functions include mean, standard deviation, 
median, minimum, and maximum values. The four energy ratios are shown in Eqs. (4)-(7) (Al-Qazzaz et al., 2021). 
Dimensionality reduction is also achieved through statistical and energy functions, with the energy of each band 
computed using Eq. (3). 

 𝐸 = ∑ (
𝐹(𝑛)

𝑁𝑃𝑆𝐷
)

𝑁𝑃𝑆𝐷
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2

                               (3) 
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                              (4) 
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                                  (5) 

 𝑅3 =
𝐸𝛽

𝐸𝛼
                                  (6) 

 𝑅4 =
𝐸𝛼

𝐸𝜃
                                  (7) 

F(n) denotes the signal's output at a specific frequency n. The feature extraction process culminates in balanced results 
for each class during the training phase. Based on the number of samples between classes that are not the same, the 
sample is multiplied using the SMOTE algorithm (Wang et al., 2024), as shown by Eq. (8). Where x is the original sample, 
r is a random number between 0 and 1, j is between 1 and the nearest sample number, and z is the closest sample. 

 𝑥𝑖 ′ = 𝑥𝑖 + 𝑟 × (𝑧𝑖𝑗 − 𝑥𝑖)                                (8) 

Selecting the Importance Feature 

Chi-square is a statistical method to select the most significant features from a dataset. This is especially useful in 
categorical data analysis when determining which features have the most substantial relationship with a particular target 
variable (Teng & Bi, 2017). Chi-square statistics are calculated for each feature in the EEG dataset, as shown in Eq. 9. This 
statistic measures the dependency between a feature and a target variable based on the difference between each 
category's observed and expected frequencies within the feature.  

 𝜒2 = ∑
(𝑂𝑖−𝐸𝑖)2

𝐸𝑖
                                   (9) 
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𝑂𝑖 is the discovered occurrence rate for category i and 𝐸𝑖  is the expected frequency for category i. For the test of 
independence, the expected frequency for each cell in a contingency table is calculated using Eq. (10). 

 𝐸𝑖𝑗 =
(𝑅𝑜𝑤 𝑇𝑜𝑡𝑎𝑙)𝑖×(𝐶𝑜𝑙𝑢𝑚𝑛 𝑇𝑜𝑡𝑎𝑙)𝑖

𝐺𝑟𝑎𝑛𝑑 𝑇𝑜𝑡𝑎𝑙
                           (10) 

The computed chi-square is compared with the level of significance, which is determined by the selected confidence level 
of 0.05. When the computed statistic is greater than the significance level selected, the null hypothesis, showing that 
there is no relationship between the feature and the target variable, is rejected. Features with Chi-square statistics 
exceeding the critical value are considered significant and sorted by importance. The most significant is in the first column, 
and others have lower importance, indicating a strong relationship with the target variable. 

Relief Feature Selection (ReliefF) is a popular and effective feature selection algorithm mainly used for supervised 
classification tasks (L. Yang et al., 2021). ReliefF starts by initializing the weights for each feature to zero. This is followed 
by identifying the closest features from the same class and examples from different courses in the iteration process. When 
the value of the current feature is the same as the nearest class, the weight will be increased. However, the weight is 
reduced when the current value of a feature is different from the value of the nearest class. The magnitude of the weight 
change depends on the difference between the feature's current value and its closest neighbors, as shown in Eq. (11). 
Updating the weight 𝑊[𝐴] for each A based on the difference in feature values R and its near-hits and near-misses. 

 𝑊[𝐴] = 𝑊[𝐴] − ∑
(𝐴(𝑅)−𝐴(𝐻))2

𝑚𝑘𝐻∈𝐻𝑖𝑡𝑠 + ∑
(𝐴(𝑅)−𝐴(𝑀))2

𝑚𝑘𝑀∈𝑀𝑖𝑠𝑠𝑒𝑠                                      (11) 

where 𝑚 is the number of classes and 𝑘 is the number of neighbors. After repeating all the calculations in the dataset, 
ReliefF ranks the features based on their weights. Features with higher weights are considered more important for the 
classification task. 
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Classification 

Several feature sets were selected based on the significance analysis results of Chi-square and ReliefF. To assess the 
efficacy of various variables in detecting driver attention, a series of experiments were carried out using deep learning 
methods, specifically a CNN-type neural network, as shown in Figure 4. In CNN, the input layer is the first layer that uses 
features extracted from five types of statistical values calculated from the PSD. The input feature is in vector form with 
dimensions 1*493. The next stage includes four convolution layers with different filter dimensions. After passing through 
all the convolution stages, Global Average Pooling overcomes the problem of reducing the spatial dimension of the feature 
map while increasing the depth, leading to excessive adjustments. Each neuron in the fully connected layer is related to 
every neuron in the layer below. The output of each neuron in the last layer is multiplied by the weight and summed with 
the bias before being passed through the activation function. The final stage uses the SoftMax function to convert an 
arbitrary real value vector into a probability, each element in the range [0, 1], and the sum of all elements equals 1. The 
classification process repeats for 100 epochs. To ensure reliability, the final result is achieved by calculating every trial 
using selected features. A total of two classifications, namely intra-subject and cross-subject, were performed. Intra-
subject classification uses data from the same subject for training and testing. Meanwhile, cross-subject classification 
combines all data from four subjects, followed by randomization. Before the training, the statistical variation features of 
the PSD values in each frequency band are randomly partitioned into a training set, subjected to 20% hold-out validation 
testing, as shown in Figure 5. The model performance results are analyzed using characteristics such as accuracy, 
precision, recall, specificity, and F-score, as shown in Eq. (12). When the actual value and the prediction are positive, it is 
called a true positive (TP). However, when the actual value and the prediction are negative, it is called a true negative 
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(TN). A false positive (FP) is obtained when the truth is negative but the prediction is positive, also called a type 1 error. 
When the truth is positive but the forecast is negative, it is called a false negative (FN), also recognized as a type 2 mistake. 

 

 

 A lightweight CNN model architecture. 
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 Illustration of data division during the classification process. 

Result 

Class Label Distribution Analysis 

The fatigue index of some individuals is distributed centrally without outliers, but there is also a large amount of 
unbalanced data, as shown in Figure 6. The class with the most significant sample shows the fatigue condition among the 
three classes. Only S16 data for the fatigue index is centered on the drowsy and S20 on the alert conditions. Datasets S05, 
S14, S15, and S16 show an even distribution of samples, forcing their selection for further investigations. An unbalanced 
sample size significantly affects the effectiveness of the classification model. The model trained with imbalanced data 
may be biased towards the majority class due to their optimization to reduce total error. This suggests that the model can 
predict mostly the majority class, although the examples come from the minority class. Imbalanced data is capable of 
causing suboptimal generalization performance, making it difficult for the model to classify instances belonging to the 
minority class accurately. To address the limitation, oversampling is a powerful method to overcome disparity between 
classes in classification tasks. This includes increasing the proportion of minority-class samples to achieve a balanced class 
distribution in the dataset. 
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 PERCLOS index distribution. 

Results of Feature Selection 

A subset of related characteristics from the initial feature set is selected to improve model performance or decrease 
computational complexity. Feature selection aims to eliminate redundant, repetitive, or performance-degrading 
characteristics while retaining the most discriminative and informative features. The selection of the most pertinent 
attributes can reduce the dimensionality of data, leading to more straightforward, easier-to-understand models and 
faster computation. However, original features are retained when the removal process causes a loss of accuracy. Figure 
7 shows the feature selection results using the Chi-square and ReliefF algorithms. A total of 493 features are divided into 
20 groups, selecting from the lowest numbers 5 to 493 with intervals of 5% for each level, based on the computational 
output of the ranking algorithms. The graph shows that the accuracy decreases considerably when extraneous features 
are removed based on Chi-square and ReliefF. As the number of features increases, the minimum accuracy value also 
increases. With 366 features, the Chi-square algorithm selection has the highest accuracy, and ReliefF achieved the 
greatest at 390 features. Moreover, the number of features does not suggest that the composition of each subject is the 
same. Chi-square has the highest accuracy in the training phase. Validation of both algorithms based on the features that 
produce the highest accuracy is needed for the testing phase to determine the best. 

 

 Comparison of feature selection results. 

CNN Performance on Intra- and Cross-Subject Classification 

Intra-subject classification is a machine-learning task that aims to classify data samples from the same individual. In this 
research, intra-subject classification is used by analyzing data from the same individual to make predictions or diagnose 
problems. This method consists of examining data from each subject independently rather than pooling data from 
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multiple subjects. Furthermore, it recognizes that individuals can show patterns or properties in their data to achieve 
correct classification or predictions. Lightweight CNN is used in categorization, and the results are compared to determine 
the most accurate feature. The results of CNN classification for each subject based on Chi-square and ReliefF are shown 
in Figure 8. In the classification, training is carried out on samples in each subject, divided into 80% as training and 20% 
as testing. A total of two iterations are applied during the process, each with a different distribution of divisions in the 
training and testing stages. To verify that the selected features are optimal, each feature from the individual algorithms 
is applied in every iteration. The selection of the best feature algorithm is based on the highest accuracy results. Based 
on the classification results, Chi-square produces an accuracy of 70.87% and ReliefF of 71.01%.  The confusion matrix, as 
presented in Figure 9(a), highlights that the CNN model maintains a performance level exceeding 60% even when applied 
to cross-subject classification.  

 

 Accuracy rate of each subject with different feature selection algorithms. 

 
 

(a) (b) 

 Cross-subject confusion matrix (a) and ROC curve (b). 

This is notable given that cross-subject classification involves using data from subjects different from those on which the 
model was trained, which introduces greater variability in the data distributions. In this scenario, the dataset is composed 
of data from four different subjects, and the total dataset is divided into 80% for training and 20% for testing. 

This division ensures that the model is trained on a sufficiently large and varied dataset while also being evaluated on a 
separate subset to assess its generalization ability. The classification process involves running the CNN model for 100 
epochs in both intra- and cross-subject classification tasks. The choice of 100 epochs strikes a balance between allowing 
the model to learn meaningful patterns from the data and avoiding overfitting. The performance of the model is 
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monitored through the confusion matrix, where the box highlighted in blue indicates the number of samples that were 
successfully and correctly classified by the CNN. This visual representation provides insight into how well the model is 
able to generalize across subjects with differing data distributions. Despite the inherent challenges of cross-subject 
classification, where the distribution of features may vary significantly, the CNN still manages to achieve a reasonably 
high classification accuracy, demonstrating its robustness and effectiveness in handling such variability. 

Table 2 Cross-subject classification performance. 

Parameter 
Class 

Awake Tired Drowsy 

True Positive 137 198 154 
False Positive 79 95 45 
False Negative 70 110 39 
True Negative 422 305 470 

Precision 0.6343 0.6758 0.7739 
Sensitivity 0.6618 0.6429 0.7979 
Specificity 0.8423 0.7625 0.9126 
Accuracy 0.6907 0.6907 0.6907 
F-score 0.6478 0.6589 0.7857 

The box in blue shows the number of samples successfully and correctly classified by the CNN. Detailed values and 
percentages of CNN performance from calculating the confusion matrix are shown in Table 2. Based on classification, the 
best and weakest performance are obtained when the CNN faces data labeled as drowsy and tired, respectively. The 
results showed that the overall accuracy value of the model was 69.07%. The best value for the specificity parameter was 
achieved across all classes compared to other parameters, as supported by the receiver operating characteristic (ROC) 
curve shown in Figure 9(b). The ROC curve shows the performance of CNN in classifying each class at various classification 
thresholds. On the y-axis of the ROC graph is the actual positive rate (sensitivity), while the x-axis represents the FP rate 
(1 minus specificity). The percentage of erroneous positives of adverse events is misclassified, while sensitivity indicates 
the proportion of positive events that are accurately classified. This graphic proves that CNN can detect each class 
accurately, with an average area under the curve (AUC) value of 82.85%. As shown in the specificity parameter in the 
confusion matrix, CNN is most accurate when detecting samples labeled as drowsy, with an AUC value close to 90%. The 
specificity of this test measures the ability to correctly identify drivers who are not drowsy, alert, or tired. This test is 
particularly designed to produce a few FP results. 

Discussion 

The results indicate that the CNN model performs significantly well, even with relatively simple data input, highlighting 
its robustness. This performance, however, also reveals an important observation: each brain signal exhibits unique 
characteristics across different subjects. This is evidenced by the noticeable variation in classification results, which differ 
substantially between subjects. While the CNN model successfully recognized well-trained data in several subjects, the 
accuracy dropped below 70% in subject S14. This decline in performance aligns with previous research, which has 
highlighted the limitations of EEG signals, particularly their dynamic nature, which varies significantly depending on the 
subject and time. The classification process, both intra- and cross-subject, aims to generalize across these variations by 
collectively classifying data samples from multiple individuals or subjects. 

The comparison between intra- and cross-subject classification reveals a key challenge: cross-subject classification 
accuracy is generally lower. This discrepancy is common in multi-class cross-subject classification, as many studies report 
lower accuracy when classifying EEG signals across different individuals. The primary reason for this is the inherent 
variability in EEG characteristics over time and between individuals. While several previous models utilizing the SEED-VIG 
dataset have reported higher accuracy than the CNN model used in this study, it is essential to consider the differences 
in model complexity, number of classes, and testing methodologies. For instance, Cui et al. (2022) achieved 73.22% 
accuracy in cross-subject classification using a more complex and interpretable CNN. In another example, Paulo et al. 
(2021) reached 75.87% accuracy by applying deep CNN techniques for binary classification. Meanwhile, Shen et al. (2021) 
used PSD features combined with an SVM, yielding an accuracy of 62.51% in inter-subject classification. 

Despite these differences, the model in this research offers competitive results, especially considering the simplicity of 
the approach and its potential for real-time applications. In comparison to previous studies, this CNN model demonstrates 
strong performance in both intra- and cross-subject classification tasks, providing valuable empirical evidence for its 
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viability in real-time EEG-based applications, where classification accuracy and robustness across varying subjects are 
crucial. 

Conclusion 

In conclusion, this research evaluated the multi-class detection system for driver fatigue levels using EEG. The raw data 
of the EEG were obtained from the public dataset and analyzed through preprocessing, feature extraction, feature 
selection, and classification using a lightweight CNN. Feature extraction from five types of frequency bands used the 
Welch method, which produced a PSD-type frequency domain. Each frequency band in PSD form was re-extracted using 
five types of statistical calculations and four types of energy bands to obtain 493 features. The optimal features were 
selected through the ReliefF test with the highest accuracy value. A CNN-type classification model was built using four 
convolution layers. Each convolution layer was supported by ReLU activation and normalization functions, connected to 
a multi-layer neural network with three class outputs. After training for 100 epochs, the lightweight CNN recognized the 
test data accurately. The average accuracy value for intra-subject classification was 71.01%, while the cross-subject 
classification had 69.07%. 
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