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Abstract 

This study examines integrating the Schrödinger equation with classical mechanics using a virtual axis-to-dimensional expansion. 
One-dimensional material fluctuations are viewed in a two-dimensional plane, explaining the random nature of these fluctuations 
and their spatial and temporal trajectories. A quantum-consistent force field is proposed, with its strength determined by the Planck 
constant and inversely proportional to the distance from the stationary point. Newton's second law is applied to establish a second-
order linear differential equation for material fluctuations, from which the standard one-dimensional Schrödinger equation is 
derived, showing their equivalence. The study extends the three-dimensional Schrödinger equation to include external forces and 
explains quantum phenomena like energy levels and transitions through particle trajectory changes. This approach connects classical 
mechanics and quantum mechanics, offering a concise and intuitive formulation with clear physical significance. 
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Introduction 

The Schrödinger equation holds a significant position and exerts a wide-ranging influence in various contemporary 
scientific domains and quantum mechanics. However, since its formulation in 1926, no theory has been able to provide 
conclusive proof of its validity. Scholars concur that the Schrödinger equation is a fundamental assumption in quantum 
mechanics, offering a probabilistic depiction of the dual nature of matter waves and particles. Its validation can only be 
achieved through practical experimentation rather than relying on more fundamental assumptions (Gudder et al., 2019; 
Kiukas et al., 2019; Kramers, 2018). Consequently, researchers are primarily focused on delving deeper into the 
intricacies of quantum theory (Andrianopoli et al., 2019; Penati et al., 2019; Rama, 2019). Furthermore, they are actively 
exploring the specific applications of quantum mechanics (Li et al., 2017; Song et al., 2016; Zhao et al., 2019) and 
developing approximate simplification techniques and solution methods for the Schrödinger equation (Shi & Nie, 2017; 
Pandir et al., 2019; Shengfan et al., 2019; Troy, 2019; Dai & Yin, 2019).  

With the advancement and progress of mechanical theory, quantum mechanics and classical mechanics have become 
increasingly integrated into people's daily lives. Combining these concepts continuously creates new, challenging fields 
and problems (AS et al., 2019). However, the absence of theoretical derivation and proof for Schrödinger's equation has 
always hindered people's comprehension and understanding of quantum mechanics and the thorough interpretation 
and analysis of specific quantum mechanical problems. Understanding the relationship between classical and quantum 
mechanics is crucial for the dissemination, development, and in-depth exploration of quantum mechanics and even for 
the progressive advancement of natural science. Various scholars have investigated the enigma surrounding the 
connection between classical and quantum mechanics from diverse perspectives in recent years. 

Although there is a prevailing belief that classical mechanics is only applicable to the study of objects with speeds 
significantly lower than that of light and is not suitable for the microscopic realm, scholars have provided evidence for 
the validity of the three conservation laws and principles of quantum mechanics through the observation of cosmic 
microwave background radiation (Boriev, 2018). This indicates that the microscopic world still adheres to the laws of 
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nature that govern the macroscopic world or, at the very least, does not contradict them. Furthermore, based on 
Einstein's mass-energy equation (Na et al., 2019), the research findings on the wave-particle duality of light reinforce 
the intrinsic unity between the two realms. Consequently, exploring the concept of energy as a means to delve deeper 
into this unity emerges as a promising avenue for further investigation. 

Scholars have extensively examined and investigated the possibility of a "Quantum Mechanics-Unified Theory of 
Classical Mechanics" (Mills, 2003). Numerous aspects, including energy conservation, kinetic energy-potential energy, 
quantum gravity, orbital energy level, and randomness, have been explored to demonstrate this theory's feasibility 
(McIntyre, 2022). However, due to the inherent nature of randomness, developing a particle trajectory model that aligns 
with these characteristics is necessary. Additionally, a comprehensive force field is required to adequately explain 
quantum gravity, as the current demonstration process is imperfect. Consequently, providing rigorous proof linking the 
classical mechanical motion equation to the Schrödinger equation is impossible. 

Feintzeig offered C*-algebras as a mathematical framework for understanding the interconnection between quantum 
and classical physics, thereby laying the groundwork for philosophical discourse on quantization and the classical limit. 
The approach was used to study significant problems in theory change, such as reduction, structural continuity, 
analogical reasoning, and theory development. Using algebraic quantum theory, Feintzeig demonstrated how rigorous 
mathematical techniques can strengthen philosophical argument in the fields of physics and science, thus offering 
insightful views on continuity and theory change in physics (Feintzeig, 2022). Vijaywargia and Lakshminarayan 
recognized classical Koopman channels as quantum channel counterparts, allowing a comparison between their 
evolution. They compared spectral properties using a coupled kicked rotor and showed that stable classical regions 
govern quantum spectra. In chaotic systems, spectral density is composed of an annular structure with diminishing size 
in the classical limit, and the surviving modes are specified by unstable manifolds or stable periodic orbits (Vijaywargia 
et al., 2025).  

Cerisola et al. investigated the equilibrium deviations in nanoscale systems induced by environmental interactions, 
specifically in the θ-angled spin–boson model. They obtained a general classical equilibrium state with environmental 
corrections and demonstrated that Bohr's correspondence between quantum and classical is maintained at any coupling 
strength in the quantum formalism. By categorizing coupling regimes as weak to ultrastrong, the study describes 
quantum-to-classical crossovers and investigates the competition between quantum corrections and mean force shifts 
for equilibrium states, with applications to magnetism and exciton dynamics (Cerisola et al., 2024). Blasco and Lluís 
(Barrett et al., 2023) also presented the Path Integral formulation of Quantum Mechanics, illustrating its applicability to 
simple systems and its connection to classical mechanics in the classical limit. They established that it is equivalent to 
Schrödinger's formulation and explored its consequences through the Aharonov-Bohm effect. Finley (Finley, 2021) 
introduced a deterministic quantum mechanics formalism in terms of velocity functions applicable to n particles, 
thereby generalizing the domain of Bohmian mechanics to stationary states. The novel formalism provides dynamic 
particles that apply to all states by unifying Bohmian mechanics with an evident energy-conserving strategy. The ensuing 
equation comprises two kinetic energy terms and a pressure-like term, which is given as an n-body generalization of the 
enhanced Madelung equations.   

Magri et al. (Magri et al., 2023) highlighted the influence of quantum mechanics on fluid mechanics and spectral theory, 
advocating for quantum-inspired techniques like symmetry considerations and spectral analysis. They illustrated 
examples in acoustics and incompressible flows, showing their potential for enhancing fluid dynamics research and 
teaching. Rozema et al. (Rozema et al., 2024) studied causally indefinite processes in quantum information initially 
connected with reconciling general relativity and quantum mechanics. They highlighted advantages in metrology and 
quantum computation, summarized experimental and theoretical advances, and discussed interpretations of results 
and prospects. Baiardi (Baiardi et al., 2021) investigated computerized quantum mechanical reaction path elucidation 
and molecular dynamics. Some important strategies involve heuristic rules, external biases, interactive quantum 
mechanics, transition-state optimization, and reactive molecular dynamics. These methods minimize human effort and 
bias, and maximize computational chemistry, allowing for unexpected discoveries. Bass & Doser (Bass et al., 2024) 
discussed quantum sensing as a way to surpass classical measurement limits in particle physics. The most important 
applications are neutrino properties, tests of fundamental symmetries, dark matter detection, and dark energy studies. 
Atom interferometry, optomechanical systems, and atomic clocks are the most important technologies for low-energy 
physics, while quantum dots, superconducting circuits, and spin sensors may apply to high-energy detectors. The paper 
highlights opportunities and collaboration challenges in implementing quantum sensor applications in future 
experiments.  
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Schleich et al. (Schleich et al., 2016) reported the long tradition of quantum physics in Germany and its impact on 
modern technology. While early quantum technology resulted in semiconductors and lasers, recent developments 
target the control of single quantum systems. With enormous economic potential, the field is driven by global research 
initiatives. To remain competitive, Germany must enhance its research infrastructure to be capable of further 
developing quantum technology. Malo et al. (Yago Malo et al., 2024) discussed the groundbreaking influence of cold 
and ultracold atomic platforms on quantum simulation, computation, metrology, and sensing. These technologies drive 
condensed matter physics, cosmology, quantum mechanics, quantum chemistry, and quantum biology. The article 
highlights three key points: (i) quantum technologies are leading cross-disciplinary research, (ii) quantum many-body 
physics constitutes the heart of frontier science, and (iii) quantum advancement will have long-lasting influences on 
society. Emphasizing responsible research and innovation, the paper provides an overview of interdisciplinary use cases 
where atomic platforms are of particular significance.  

In summary, it is essential to construct a trajectory model for particle motion that incorporates randomness and applies 
the energy principle to examine the power field that adheres to the principles of quantum mechanics. This research 
path is both viable and worthwhile. Consequently, this study also investigates the transition from classical to quantum 
mechanics. 

Classical mechanics research is centered around the object's motion trajectory. Still, it fails to address the problem of 
matter fluctuation and cannot provide the particle's motion trajectory in the natural dimension. Conversely, the solution 
to the Schrödinger equation is a complex plane wave, which does not offer a point of reference. This disparity between 
classical and quantum mechanics necessitates the expansion of the natural dimension and the establishment of a virtual 
dimension (the virtual axis is solely used as an auxiliary analysis method and does not affect the equation). By combining 
the virtual and natural dimensions, matter fluctuation can be displayed through particle movement trajectories, and 
the time coordinates can describe the space-time trajectory of matter fluctuation (particles operate within this 
trajectory, and the model will explain random phenomena for observers). An equation can be formulated in classical 
mechanics by introducing a power field corresponding to the motion trajectory. De Broglie has already established the 
relationship between material fluctuations and energy, which has been experimentally verified. Therefore, by 
establishing a force field in the virtual plane that adheres to quantum mechanical phenomena based on the relationship 
between material fluctuations and energy, Newton's second law can be employed to derive a dynamic equation for 
matter fluctuations, which can be equivalently transformed into the form of the Schrödinger equation. 

Although there has been intense scholarly investigation into the relationship between classical and quantum mechanics, 
a large gap still exists in the rigorous derivation of the Schrödinger equation from classical principles. The Schrödinger 
equation is largely regarded as a postulate within quantum mechanics theory, yet no rigorous theoretical derivation 
using purely classical mechanics has been suggested. Existing approaches, such as Koopman-von Neumann mechanics 
and Bohmian mechanics, provide other descriptions but fail to complete classical determinism, quantum randomness, 
energy quantization, and wave-particle duality. Further, the possibility of an underlying force field that could provide a 
deterministic basis for quantum phenomena is yet to be investigated. Numerous efforts have been made to form 
correlations between quantum mechanics and classical mechanics, but a widely embraced theoretical approach to 
merge these two fields does not exist. Furthermore, although mathematical connections have been suggested, a clear 
derivation of the Schrödinger equation from Newtonian mechanics and a complete physical understanding of quantum 
effects have not been attained to date. Experimental verification of classical-quantum relations is also limited, and the 
engineering, physics, and quantum technology ramifications of a link are unexamined. The hypothesis of a virtual axis 
for dimensional expansion, as proposed in this paper, provides a new perspective, but its correctness and usefulness 
must be investigated theoretically and experimentally. Filling these lacunae in research, this paper attempts to create a 
trajectory-based model of both classical and quantum mechanics that provides a way of deriving the Schrödinger 
equation from classical principles. 

Novelty 

This study proposes a novel method of wedding quantum mechanics and classical mechanics by utilizing a virtual axis-
to-dimensional extension, thereby offering new information on material fluctuations and their respective trajectories. 
Another highlight is the proposal in this study of a force field model that renders the Schrödinger equation derivable 
from classical mechanics, rather than putting it forth as an absolute postulate. The coupling of Newton's second law 
with a quantum-mechanics-compatible force field, whose strength is influenced by Planck's constant and is inversely 
dependent on the distance from a fixed point creates an explicit mathematical and physical link between quantum and 
classical domains. The profound consequences of this method contribute to an extended understanding of quantum 
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states, wave functions, and quantum transitions within the context of deterministic particle motion, thus giving an 
extended view of quantum mechanics. Furthermore, this approach enables new directions of practical applications in 
engineering, physics, and the development of quantum technologies, especially in fields that demand realistic 
simulations of quantum effects based on classical mechanics principles. Moreover, the force field approach put forward 
herein indicates promising relationships to yet unstudied physical effects, such as the interaction with dark matter and 
the behavior of macroscopic fluctuations, revealing the significant consequences of this work. By the foundation of a 
novel paradigm of quantum mechanics relying on classical tenets, the present research triggers additional 
interdisciplinary research and enables concrete progress in quantum theory-based applications. 

Expansion of Natural Dimensions 

Establishing A One-dimensional Analysis Model  

The study of the wave problem in classical mechanics revolves around determining the trajectory of particles in space 
and time. However, this becomes unattainable within the confines of quantum mechanics, as it describes wave functions 
in terms of natural dimensions and time. At any given moment, two distinct geometric motion properties are associated 
with time. This implies that objects can exist simultaneously in two different states of motion (speed, acceleration), 
which contradicts classical mechanics and deviates from its objective principles. 

Classical mechanics requires that the relative time of the state of motion must be unique. In other words, a point on a 
space-time motion trajectory can only correspond to a unique moment. From the perspective of the observed 
trajectory, it can be understood that a set of unique information is obtained by observing the motion, and then each 
piece of information in the set is used as a reference axis to generate a reference system, in which the corresponding 
points of each set of information are connected to obtain the motion trajectory. For example, when observing the 
motion of a particle, the position coordinates X, y and Z are obtained at any time t, and the four pieces of information 
(X, y, Z and t) obtained by observation form a unique information group, and then the space-time motion trajectory 
under the reference system of X, y, Z and t is obtained. For material fluctuations, the biggest problem is that the 
observed information group is not unique (for example, at time t, different X, y, Z are obtained according to probability). 
If the material wave trajectory exists, the information group is not unique, indicating that the observed information is 
missing, because an objective thing must be uniquely marked by enough information. Accordingly, it is reasonable to 
speculate that the root cause of the failure to obtain the material fluctuation trajectory is the existence of unknown 
information that can not be observed at present. Therefore, to meet the needs of classical mechanics analysis, the 
unknown information of material fluctuation is represented by a virtual quantity; that is, a virtual coordinate axis is 
extended in the reference system to describe the phenomenon of material fluctuation, as shown in Figure 1. 

A graphical representation of a particle's space-time trajectory within the framework of a virtual coordinate system is 
illustrated. The solid elliptical line denotes a hypothetical trajectory of motion within an expanded dimensional space. 
Points A and A' depict locations at varying time points in time (t and t₁) where fluctuations are confined along the real-
space axis. 

 

 Virtual axis and dimensional expansion. 

In Figure 1, the 𝑋 axis is a virtual coordinate, which is related to 𝑥 and 𝑡; the axis is vertical, but it is not the axis of three-
dimensional space in daily life. It is a special axis beyond the three-dimensional space. The solid line circle is the motion 
trajectory of particles in the virtual plane, and its upper point represents the coordinates and motion state of the 
corresponding physical space points (as shown in the figure). The 𝐴 and 𝐵 points correspond to the same physical space 
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location 𝑥1, but their speed vectors differ. The virtual spiral is the space-time motion trajectory of particles in the 
phenomenon of material fluctuations, i.e.𝑡1.  Moment 𝐴′ represents that particles move in the virtual plane to 𝐴, which 
corresponds to the real space 𝑥1 location. Therefore, in the graphic model, there are unique kinematic properties 
(position and velocity) for fluctuating particles at any time, which is the premise of using classical mechanics to solve 
the problem of matter fluctuations. 

Based on the abovementioned modeling approach, the three-dimensional space can be extended to a six-dimensional 
space to derive the three-dimensional Schrödinger equation logically. Nevertheless, this study does not delve into 
developing a three-dimensional space extension model, as any spatial issue can be projected and resolved within three 
dimensions. The dynamic equations employed in classical mechanics for analytical computations are also projection 
equations based on three coordinate axes. Consequently, the three-dimensional Schrödinger equation should be 
comprehended as three distinct sets of Figure 1 models and subsequently deduced by the projection relationship. 

The study of object motion in classical mechanics involves the examination of a definite trajectory, as depicted in Figure 
1. However, the presence of material fluctuations introduces uncertainty and contradicts the principles of classical 
mechanics. This discrepancy is one of the reasons why classical mechanics is considered inadequate for explaining 
phenomena at the microscopic level. Upon analysis, it is discovered that a virtual axis's absence or unobservable nature 
results in random observations of the determined motion trajectory within extended time and space. This topic is 
further explored in detail in the subsequent discussion. 

Observation Randomness Analysis 

Because the virtual axis does not exist (or cannot be observed), when the material fluctuations described in Figure 1 are 
observed in practice, it is equivalent to 𝑋.  

The space-time trajectory axis is projected to 𝑥 − 𝑡 plane, as shown in Figure 2. Figure 2 illustrates that the variation of 
matter demonstrates a wave-like pattern concerning time. Three observations occurred during the observation time of 
𝑡1, 𝑡2  and 𝑡3. Then, the observation will appear 2 times as particles in the position 𝑥1 and position 𝑥2. If in 𝑡1 ∼ 𝑡3, 
continuous observation occurs during the period 𝑥1 position, particles will also appear in this position twice. According 
to the model in Figure 1, 𝑡1 is always observed that the particles are in 𝐵 point. 𝑡3 is the time moment of 𝐴 point. The 
speed vectors of the two points are different, but practical observations cannot be distinguished. Therefore, based only 
on the analysis of observation results, particles have spatial position uncertainty, and events appearing at a specified 
location are subject to a probability distribution, called observation randomness. The observation results align with 
practice if the particle motion is like a model. 

 

 Energy Quantization and Discrete Transitions. 

𝑥 axis is regarded as an imaginary axis. It is equivalent to the wave function in quantum theory 𝜓(𝑥, 𝑡) (The amplitude 
does not match the trajectory radius, discussed in the third section). Combined with the observation of randomness, it 
is very easy to explain the inaccurate problem. Because of the observation position 𝑥1 at that time, a different 
momentum is obtained, and the particles with the same momentum will be in different positions. Different positions 
and momenta in this model correspond to different waveforms under the same parameters, and the existing quantum 
mechanics uses the concept of position and momentum to explain. In this model, the probability that the position or 
momentum has a certain value is the same, which is the circumference of the trajectory. The wave function is used in 
quantum theory as |𝜓(𝑥, 𝑡)|2. The countdown describes the probability and |𝜓(𝑥, 𝑡)|2 is proportional to the 
circumference of the trajectory, so it conforms to the probability interpretation of the wave function. The depiction 
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above demonstrates the model's logicality and highlights the potential to deduce the dynamic wave equation equivalent 
to the Schrödinger equation. 

Matter Fluctuation Equation based on Classical Mechanics 

Equation Establishment 

The concepts of classical mechanics have here been extended to provide a link with the Schrödinger equation. Classical 
mechanics portrays particle motion in terms of deterministic trajectories controlled by Newton's second law, which 
connects force, mass, and acceleration. Quantum mechanics employs probabilistic wavefunctions, and the step from 
classical to quantum accounts is not an easy one. In attempting to narrow this gap, the classical formulation has here 
been modified to permit a wave-like description to arise from deterministic motion. 

Dimensional Expansion and Virtual Axis 

One of the key changes is the introduction of a virtual axis, which expands the classical description of motion into a new 
dimension. This new degree of freedom allows material fluctuations to be explained as continuous trajectories instead 
of discrete, random quantum events. By expanding into this new dimension, a link between classical deterministic 
motion and quantum wave-like behavior is created. The virtual axis is a theoretical concept that is consistent with the 
principle of wave-particle duality, allowing quantum phenomena to be explained in terms of trajectory evolution. 

According to classical mechanical theory, particles can move on an extended surface, and the plane must have a force 
field. As there is an unknown force field, it is assumed that free particles in 𝑥 − 𝑋 plane move uniformly around the 
circumference and receive the field force 𝑭 = −𝜉𝒓 vector, where 𝜉 represents the field force coefficient. Particle vector 
motion equation is 𝒓(𝑡) and 𝜔 is the rotational speed, as shown in Figure3. 

 

 Force Field Representation.  

A quantum theory-consistent force field with a strength of Planck's constant and inversely proportional to the distance 
from a certain fixed point is assumed. One obtains from Newton's second law, in this broader framework, a second-
order differential equation for material fluctuations. The force field provides an energy equation, which is the energy 
quantization of quantum mechanics. The energy formula from classical physics in Eq. (1): 

𝑈 = 𝑉0             (1) 

where: 𝑈 and 𝑉0 are the potential energy and kinetic energy in the force field, respectively. 

Then, the total energy is as follows in Eq. (2): 

𝐸 = 𝑈 + 𝑉0            (2) 

According to the energy relationship of De Broglie in quantum mechanics, Eq.(3) is expressed as follows: 

𝐸𝑑 = ℎ𝑓            (3) 

In Eq. (3),𝐸𝑑  represents the particle energy described by De Broglie, ℎ is Planck's constant, and 𝑓 refers to the particle 
fluctuation frequency. 
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Based on quantum mechanics, there is no unknown force field; naturally, there is no potential energy. Therefore, 
compared to this model, the energy given by De Broglie should be equal to the particle kinetic energy (or potential 
energy), that is in Eq. (4), 

𝐸𝑑 = 𝑈 = 𝑉0                           (4) 

By classical mechanics, there are in Eq. (5) 

𝑈 =
𝑚(𝜔𝒓)2

2

𝑉0 =
𝜉𝒓2

2

}                           (5) 

Because the circular motion frequency of the model particles in this paper is the same as the wave function frequency 
of quantum mechanics, the angular velocity of particle motion can be expressed as Eq.(6): 

𝜔 = 2𝜋𝑓            (6) 

Uniting Eq. (3) to Eq. (6) leads to 

ℎ𝑓 =
𝑚(2𝜋𝑓𝒓)2

2

ℎ𝑓 =
𝜉𝒓2

2

}           (7) 

By rewriting Eqs. (7) and (8) is obtained as follows: 

𝑓 =
ℎ

𝑚2𝜋2𝒓2 =
ℏ

𝑚𝜋𝒓2

𝜉 =
2ℎ𝑓

𝒓2 =
2ℎℏ

𝑚𝜋𝒓4 =
4ℏ2

𝑚𝒓4

}          (8) 

Among them, ℏ =
ℎ

2𝜋
 is Planck's constant. 

For convenience, 𝑅 = |𝒓| represents the radius of the trajectory circle, then in Eq. (9) 

𝑓 =
ℏ

𝑚𝜋𝒓2 =
ℏ

𝑚𝜋𝑅2

𝜉 =
4ℏ2

𝑚𝒓4 =
4ℏ2

𝑚𝑅4

}           (9) 

According to Newton's second law, Eq. (10) is expressed as follows: 

𝑚
𝑑2𝒓

𝑑𝑡2 = 𝑭 = −𝜉𝒓 = −
4ℏ2

𝑚𝑅4 𝒓                      (10) 

After simplification, the available material fluctuates in 𝑥 − 𝑋, the differential equations of motion of the plane are as 
follows: 

𝑑2𝒓

𝑑𝑡2 +
4ℏ2

𝑚2𝑅4 𝒓 = 0                        (11) 

By solving the above second-order differential equation, the motion trajectory of this paper's model can be obtained 
and expanded on the timeline to get the fluctuating space-time trajectory wave. The following provides proof of Eq. 
(11) and presents its equivalence as a Schrödinger equation. 

Implications and Interpretations 

These results imply that wave-like quantum behavior can be naturally produced from a classical deterministic system 
when an extra dimension is considered. The hypothetical force field creates fluctuations which, when projected onto 
real space, produce probability distributions in accord with quantum mechanical wavefunctions. In addition, the 
discreteness of the energy level occurs in the model as a consequence of force field trajectory constraints, with 
conceptual analogy to boundary conditions that specify discrete energy levels in quantum mechanics. 

By embedding classical mechanics in this way through these alterations, a formal equivalence between the deterministic 
trajectories and the probabilistic wavefunctions has been developed, allowing another point of view for the derivation 
of the Schrödinger equation. 
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Proof of Equivalence With the Schrödinger Equation 

As shown in Figure 4 by the thick solid line, the space-time trajectory of material fluctuations can be regarded as a 
special space-time wave propagating on the timeline. The image of the space-time wave function 𝛹(𝑥, 𝑡) is derived 
from the trajectory of material fluctuations.  

 

 Trajectory Evolution and Matter Fluctuation.  

Again, the solution can be written as a wave function of a second-order homogeneous linear differential equation. Set 
the space-time wave function to Eq. (12): 

𝜙(𝑥, 𝑋, 𝑡) = 𝜙(𝒓, 𝑡) = 𝑒𝑥𝑝[𝑖(𝒌 ⋅ 𝒓 − 𝜔𝑡)]                     (12) 

Among them, 𝒌 refers to the wave as |𝒌| =
2𝜋

𝜆
 and 𝜆 is the wavelength. 

By deriving the wave function Eq. (12) for time, the partial derivative of the wave function is obtained as follows in Eq. 
(13): 

𝜕𝜑(𝒓,𝑡)

𝜕𝑡
= 𝑒𝑥𝑝[𝑖(𝒌. 𝒓 − 𝜔𝑡)]

𝜕[𝑖(𝒌.𝒓−𝜔𝑡)]

𝜕𝑡
                     (13) 

= 𝑒𝑥𝑝[𝑖(𝒌. 𝒓 − 𝜔𝑡)] − 𝜔𝑖  

= −𝜔𝑖𝜑(𝒓, 𝑡)  

where in Eq. (14) 

𝜔 =
𝑖

𝜙(𝒓,𝑡)

𝜕𝜙(𝒓,𝑡)

𝜕𝑡
                        (14) 

Similar to Eq. (12), with standard vector radius, the secondary partial derivative is as follows in Eq. (15): 

𝜕𝜙(𝒓,𝑡)

𝜕𝒓
= 𝒌𝑖𝜙(𝒓, 𝑡)

𝜕2𝜙(𝒓,𝑡)

𝜕𝒓2 = −|𝒌|2𝜙(𝒓, 𝑡) = − (
2𝜋

𝜆
)

2

𝜙(𝒓, 𝑡)
}                     (15) 

According to the De Broglie momentum relationship in Eq. (16): 

𝑝𝑑 =
ℎ

𝜆
                          (16) 

By combining classical mechanics (Eq.(6)) and standard particle motion (Eq.(8)), the momentum is as follows in Eq. (17): 

𝑝 = 𝑚𝜔𝑅                          (17) 

= 𝑚2𝜋𝑓𝑅  

= 𝑚2𝜋 (
ℏ

𝑚𝜋𝑅2) 𝑅  

=
ℎ

𝜋𝑅
  

Because momentum description does not involve the power field, this model is the same as particle momentum in 
quantum mechanics, that is in Eq. (18), 

𝑝 = 𝑝𝑑                           (18) 

By Eq. (16) and (17), the wavelength expression can be derived as in Eq. (19) 
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1

𝜆
=

1

𝜋𝑅
                         (19) 

Substituting in Eq. (15) and transforming, Eq. (20) is obtained as follows: 

𝜕2𝜙(𝒓,𝑡)

𝜕𝒓2 = − (
2𝜋

𝜆
)

2

𝜙(𝒓, 𝑡) = − (
2

𝑅
)

2

𝜙(𝒓, 𝑡)

4

𝑅2 = −
1

𝜙(𝒓,𝑡)

𝜕2𝜙(𝒓,𝑡)

𝜕𝒓2

}                     (20) 

According to differential equations established for classical mechanics (Eq. (11)), and transforming, Eq. (21) is obtained 
as follows: 

𝑑2𝒓

𝑑𝑡2 +
4ℏ2

𝑚2𝑅4 𝒓 = 0

𝑑2𝒓

𝑑𝑡2 + (
4

𝑅2)
2

(
ℏ

2𝑚
)

2

𝒓 = 0
}                       (21) 

The particles in the model make a uniform circle.  Its total acceleration vector 
𝑑2𝒓

𝑑𝑡2 is equal to the normal acceleration 

vector and in the opposite direction of the vector radius. According to the movement, the relationship between the 
natural axis system and the vector system, Eq. (22), is obtained as follows: 

𝑎𝑛 =
𝑣2

𝑅
=

(𝜔𝑅)2

𝑅
= 𝜔2𝑅

𝑑2𝒓

𝑑𝑡2 = 𝒂𝑛 = −𝜔2𝒓
}                       (22) 

Where 𝑣 is the tangent speed and 𝑎𝑛 is the normal acceleration. 

By transforming Eq.(21) based on Eq. (22), Eq. (23) is obtained as follows: 

𝜔2 = (
4

𝑅2)
2

(
ℏ

2𝑚
)

2

                        (23) 

By substituting Eqs. (14) and (20) Formulas in both sides of Eq.(23), Eq.(24) is obtained as follows: 

(
𝑖

𝜙(𝒓,𝑡)

𝜕𝜙(𝒓,𝑡)

𝜕𝑡
)

2

= (
−1

𝜙(𝒓,𝑡)

𝜕2𝜙(𝒓,𝑡)

𝜕𝒓2 )
2

(
ℏ

2𝑚
)

2

                     (24) 

By rearrangement of Eq. (24), the expression form of the Schrödinger equation can be obtained as Eq. (25) as follows: 

𝑖
𝜕𝜙(𝒓,𝑡)

𝜕𝑡
= −

ℏ

2𝑚

𝜕2𝜙(𝒓,𝑡)

𝜕𝒓2                        (25) 

The vector diameter of the equation above differs slightly from the Schrödinger equation, as it encompasses an 
additional dimension. However, this disparity does not have any impact on the result. Because vector equations can be 
projected and calculated, to distinguish the latter text, it is mainly expressed differently with function symbols 𝜙. It 
indicates the hypothetical 𝑋 axle of the wave function𝜓. It does not contain a Hypothetical 𝑋 axle in the wave function 
𝜙 of quantum mechanics. it only compares 𝜓 with one more virtual dimension. As shown in Figure 4 in the shadow part, 
𝑥 − 𝑡 space-time trajectory wave projection represents the wave function 𝜓(𝑥, 𝑡). 

In addition, particle differential equations of motion of Eq. (11) can also be written as a projection as follows: 

𝑑2𝑥

𝑑𝑡2 + (
4

𝑅2)
2

(
ℏ

2𝑚
)

2

𝑥 = 0

𝑑2𝑋

𝑑𝑡2 + (
4

𝑅2)
2

(
ℏ

2𝑚
)

2

𝑋 = 0
}                       (26) 

Again, by substituting Eqs. (14) and (20) Formulas in both sides of Eq. (26), a standard one-dimensional free particle 
Schrödinger equation can be obtained in quantum mechanics as follows in Eq. (27): 

𝑖
𝜕𝜓(𝑥,𝑡)

𝜕𝑡
= −

ℏ

2𝑚

𝜕2𝜓(𝑥,𝑡)

𝜕𝑥2                        (27) 

According to the projection principle, no matter how many dimensions are in the differential equations of motion of Eq. 
(11), the formula has only one more virtual dimension than the Schrödinger equation. As long as it is projected on the 
real dimension and timeline, the standard Schrödinger equation expression can be obtained. Also, it shows that the 
equivalence between this equation and the Schrödinger equation has nothing to do with the virtual axis. 
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General form of the Wave Equation 

Assumed that the particles are in an external situation field 𝑉(𝒓) of medium fluctuation. According to classical 
mechanics, the total kinetic energy of particles in this model is as follows in Eq. (28): 

𝐸 = 𝑈 + 𝑉(𝒓) + 𝑉0                       (28) 

According to quantum mechanics, at power under the action of the force field, the particle will change its fluctuation 
frequency, and the energy will also change with it. However, based on quantum mechanics, there is no unknown force 
field, so at this time, the energy given by De Broglie is as follows: 

𝐸𝑑 = 𝑈 + 𝑉(𝒓)                        (29) 

Because in this model, the momentum of the particle is the same as the momentum described by De Broglie, and the 
relationship between wavelength and trajectory radius (Eq. (19)) has been proved as 𝜆 = 𝜋𝑅, it is possible to deduce 
the power field problem easily as follows: 

According to classical mechanics, kinetic energy and momentum are expressed as follows in Eq. (30): 

𝑈 =
𝑚𝑣2

2

𝑝 = 𝑚𝑣
}                         (30) 

where in Eq. (31) 

𝑈 =
𝑝2

2𝑚
                         (31) 

and because in Eq. (32) 

𝑝 = 𝑝𝑑                          (32) 

So, standard Eq. (29) can be rewritten as follows in Eq. (33): 

𝐸𝑑 =
𝑝𝑑

2

2𝑚
+ 𝑉(𝒓)                        (33) 

According to De Broglie, momentum and kinetic energy are expressed as follows in Eq. (34): 

𝐸𝑑 = ℎ𝑓

𝑝𝑑 =
ℎ

𝜆

}                         (34) 

As 𝜆 = 𝜋𝑅, Eq. (35) is obtained as follows: 

𝐸𝑑 = ℎ𝑓

𝑝𝑑 =
ℎ

𝜆
=

ℎ

𝜋𝑅

}                        (35) 

By substituting Eq.(33), Eq. (36) is obtained as follows: 

ℎ𝑓 =
1

2𝑚
(

ℎ

𝜋𝑅
)

2

+ 𝑉(𝒓)                       (36) 

Then, there is in Eq. (37) 

𝑓 =
ℎ

2𝑚
(

1

𝜋𝑅
)

2

+
𝑉(𝒓)

ℎ
                       (37) 

By circular motion, angular velocity and frequency relationship, Eq. (38) is obtained as follows: 

𝜔 = 2𝜋𝑓                         (38) 

=2𝜋 [
ℎ

2𝑚
(

1

𝜋𝑅
)

2 𝑉(𝑟)

ℎ
] 

=
2ℏ

𝑚𝑅2 +
𝑉(𝑟)

ℏ
  

According to Eq. (22), there is in Eq. (39): 

𝑑2𝒓

𝑑𝑡2 = −𝜔2𝒓                        (39) 
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To obtain a power field directly based on the wave equation of classical mechanics, Eq.(40) is obtained as follows: 

𝑑2𝒓

𝑑𝑡2 + (
2ℏ

𝑚𝑅2 +
𝑉(𝒓)

ℏ
)

2

𝒓 = 0                       (40) 

By arrangement of Eq. (38), Eq. (41) is obtained as follows: 

𝜔 = (
4

𝑅2) (
ℏ

2𝑚
) +

𝑉(𝒓)

ℏ
                       (41) 

By substituting Eqs. (14) and (20) Formulas in both sides of Eq.(41), Eqs. (42) and (43) are obtained as follows: 

𝜔 =
𝑖

𝜙(𝒓,𝑡)

𝜕𝜙(𝒓,𝑡)

𝜕𝑡

4

𝑅2 = −
1

𝜙(𝒓,𝑡)

𝜕2𝜙(𝒓,𝑡)

𝜕𝒓2

}                       (42) 

𝑖

𝜙(𝒓,𝑡)

𝜕𝜙(𝒓,𝑡)

𝜕𝑡
= (

−1

𝜙(𝒓,𝑡)

𝜕2𝜙(𝒓,𝑡)

𝜕𝒓2 )
ℏ

2𝑚
+

𝑉(𝒓)

ℏ
                     (43) 

By organizing and projecting it in the natural dimension, Eq. (44) is obtained as follows: 

𝑖
𝜕𝜓(𝒓,𝑡)

𝜕𝑡
= −

ℏ

2𝑚

𝜕2𝜓(𝒓,𝑡)

𝜕𝒓2 +
𝑉(𝒓)

ℏ
𝜓(𝒓, 𝑡)                     (44) 

The general form of Schrödinger's equation is as follows in Eq. (45): 

𝑖ℏ
𝜕𝜓(𝒓,𝑡)

𝜕𝑡
= −

ℏ2

2𝑚

𝜕2𝜓(𝒓,𝑡)

𝜕𝒓2 + 𝑉(𝒓)𝜓(𝒓, 𝑡)                     (45) 

Since the material wave equation has been derived based on classical mechanics, it has been proved to be equivalent 
to the Schrödinger equation. 

Expanded Discussion on Underlying Assumptions 

In order to ensure clarity and theoretical consistency, we set out and discuss the underlying assumptions of our 
proposed model clearly below. 

The proposed model is based on a set of basic assumptions that need explicit statement and a more robust defense. To 
start with, the introduction of an imaginary dimensional axis is key to our treatment. In contrast with classical 
mechanics, in which particle trajectories are defined solely within measurable physical dimensions, quantum mechanics 
is inherently about probabilistic descriptions that necessarily defy deterministic trajectories typical of classical physics. 
To balance this asymmetry, we have proposed a virtual axis, a conceptual, additional analytical dimension, to depict 
variations of particle states. This hypothesis enables us to view quantum randomness as classical paths projected onto 
a real axis from an extended dimensional space. Although this virtual axis is not physically visible, it is conceptually 
warranted as a mathematical construct, like imaginary numbers in electrical engineering and theoretical physics, to 
enable a more intuitive visualization of quantum effects within a classical framework. 

Secondly, our theory presupposes the presence of a quantum-compatible force field, described explicitly in terms of a 
strength proportional to Planck's constant and inversely proportional to the distance from an immobile point of 
reference. The suggested hypothetical force field provides a classical analogue of the quantum potential identified in 
Bohmian mechanics, but essentially differs by being explicitly derived from classical mechanical principles. The field 
serves as a deterministic basis that replicates the wave-like behavior typical of quantum mechanics and the energy 
quantization phenomenon, setting up an immediate correspondence between trajectory radius and discrete energy 
states. 

The hypothesis concerning this force field, though conjectural, is philosophically consistent with established quantum 
principles, i.e., the energy-frequency relationship established by De Broglie. The harmony between them suggests a 
workable classical interpretation that may be amenable to examination via computational or experimental approaches. 
By explicating these assumptions, completely detailing their conceptual functions and the logical rationales for their 
inclusion, our model becomes more theoretically secure. Future efforts will involve empirical testing along with 
investigations of possible extensions or modifications of these initial assumptions to enhance their utility and physical 
applicability. 
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Results 

Frequency and Trajectory Radius Problem 

In this particular model, the change of energy arises due to the radius of the trajectory encompassing the expanded 
surface. The energy associated with different radii exhibits variation, which subsequently manifests as a modification in 
the frequency within the wave function (Eq. (9)). The formula can also be observed. The main reason behind this lies in 
the fact that whether this paper demonstrates the equivalence with the Schrödinger equation or elucidates the 
establishment process of the Schrödinger equation, it assumes a specific form for the wave function as follows: 

𝜙 = 𝑒𝑥𝑝[𝑖(𝒌 ⋅ 𝒓 − 𝜔𝑡)]                       (46) 

Their amplitude is 1 by default, which directly leads to the change of radius on the timeline, but as the change of 
frequency. The evolution of circular motions into wave-like forms is depicted in Figure 5. The left side illustrates the 
trajectories of material oscillations in a broad coordinate space, with various radii corresponding to various amounts of 
energy. Conversely, the right side illustrates the extrapolated vibrational motion in real space, emphasizing the wave 
function form that is pertinent to the system. As shown in Figure 5, if the radius of the two different orbits is reduced 
by half, the particle energy (i.e., kinetic or potential energy in this model) becomes 4 times. Corresponding to 𝑥 − 𝑡 
plane isometric wave, the frequency becomes 4 times. Therefore, it conforms to the quantum theory's energy and 
frequency conclusions.  

 

 A schematic diagram of the change in the Orbit Radius. 

Energy Level Problem 

One of the key features of quantum mechanics is the discrete nature of energy levels, energy changes, and energy 
transmission in particles. In the context of this problem, this model demonstrates the regularity of orbital changes. As 
depicted in Figure 5, the trajectory of this model does not change arbitrarily. For instance, when a particle transitions 
from orbit 1 to orbit 2, the tangent velocity of the particle only increases due to the differing tangent velocities of the 
two orbits. Once the particle reaches the tangent speed of orbit 2 and aligns tangentially with the orbit, it can enter 
orbit 2, resulting in a subdued change in the orbit. According to a specific law, different orbits correspond to different 
energies. Considering the conclusion of the discrete change of energy theory (as indicated by (9)), it can be inferred that 
the radius change of the trajectory in this model follows a regular pattern.  

Since this paper primarily focuses on establishing a connection between classical mechanics and quantum mechanics, 
it will not extensively delve into the discussion of whether the energy level, transitions, and other laws of change adhere 
to the principles of quantum mechanics. Furthermore, it will not explore the causes of orbit change or deduce its laws. 
However, the model may indeed exhibit these quantum phenomena. 

Equation Equivalence Problem 

This paper presents an alternative approach to deriving the wave equation by utilizing the de Broglie relationship and 
making minor adjustments. The de Broglie relationship, which forms the basis of the Schrödinger equation, has been 
extensively validated and is widely accepted as accurate. However, quantum mechanics posits the absence of a force 
field and excludes any potential energy term. Consequently, the particle energy derived from the de Broglie relationship 
does not incorporate the potential energy associated with the force field. Instead, it represents the particle's kinetic 
energy in this model, rather than the total energy of particle motion. In contrast, as described by de Broglie, momentum 
remains unaffected by the power field and remains consistent within this model.  

By incorporating the de Broglie relational search for the force field, this approach aligns with both classical mechanics 
and quantum mechanics. The explored force field adequately accounts for material fluctuations and the observed 
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randomness inherent in the model, making it suitable for practical testing of material fluctuations. Therefore, asserting 
that the wave equation derived from classical mechanics is equivalent to the Schrödinger equation is reasonable, leaving 
no room for doubt. 

Problems with the Existence of a Force Field 

While the virtual dimension adheres to certain principles of multidimensional space theory, its presence is not an 
essential requirement in the derivation of wave equations or in establishing their equivalence to the Schrödinger 
equation within the framework of classical mechanics. The primary purpose of this paper is to utilize the virtual 
dimension to identify a force field capable of replicating material fluctuations. Consequently, the existence of this force 
field assumes paramount significance. 

In the absence of the force field, this study demonstrates the possibility of employing a distinct force field to replicate 
material fluctuations, thereby contributing to the advancement of quantum mechanics. Conversely, if the force field is 
present, one can confidently speculate that it aligns with certain physical phenomena and theories, encompassing: 

1. The current force field may be connected to dark matter. The hypothesis suggesting the potential for a 
relationship between the present force field and dark matter relies on the principle that there could be an 
unknown force that would affect quantum fluctuations in the same manner that dark matter affects large cosmic 
structures. Given that dark matter does not participate in electromagnetic interactions but has gravitational 
influences, it might play a role in generating a force field that acts on particle movement at the microscopic scale. 
The paper presents a force field that is thought to be essential in describing material oscillations in the context 
of a classical model, with the field's unknown nature leaving open the chance that it could be linked to the 
fundamental forces linked with dark matter. Dark matter would be expected to be capable of affecting quantum 
effects, such as wave-particle duality and energy quantization, if it possesses an inherent field or interacts with 
normal matter via a yet unknown process. This is reinforced by ongoing discussion within theoretical physics that 
addresses the possible correspondences between quantum mechanics and cosmic events. Though this remains 
a speculative connection since it lacks empirical substantiation, investigating the possible connection between 
quantum fluctuations and dark matter may have the potential to reveal new information about both 
fundamental physics and the nature of quantum mechanics. 

2. The existence of matter waves is characterized by their wavelength, which is inversely proportional to energy. 
From the perspective of mechanical waves, which serve as the theoretical basis for material waves, waves must 
possess wavelengths to propagate. Additionally, this concept provides a valuable complement to quantum 
mechanics theory. Currently, quantum mechanics theory does not account for wavelengths, yet establishing the 
Schrödinger equation incorporates the concept of matter wave wavelengths. 

3. The frequency of material waves is inversely proportional to mass, offering a reasonable explanation for invisible 
fluctuations in the macroscopic world. As mass increases, the frequency decreases, approaching zero as mass 
tends towards infinity. 

4. Energy exhibits an inverse relationship with orbital radius. As energy increases, the radius decreases, and this 
relationship follows a quadratic pattern. It is evident that external disturbances causing an increase in energy 
result in a reduction of the fluctuation range, thereby weakening the fluctuations of substances. When the 
disturbance reaches a significant magnitude, the volatility of matter can vanish, aligning with existing theories 
and practical observations. 

 
As Table 1 indicates, the current work unambiguously deduces the Schrödinger equation based on Newtonian 
mechanics principles, unlike earlier approaches that either presume its validity, like de Broglie's wave theory and 
Bohmian mechanics, or use mathematical constructions that are not directly related to classical forces, like Koopman-
von Neumann mechanics, path integral formulations, and spectral analysis techniques. In contrast with Bohmian 
mechanics, in which an external guide wave is meant to dictate particle trajectories, the proposed method accounts for 
wave-like behavior in terms of an internal force field and hence without extra assumptions. Likewise, in contrast with 
the path integral method founded on a probabilistic sum over a multitude of conceivable paths, this framework 
possesses a deterministic classical basis and hence guarantees nearer agreement with classical mechanics. While de 
Broglie's hypothesis postulated the matter wave, the current research continues on this foundation by deriving the 
Schrödinger-like wave equation directly from Newtonian laws of mechanics, thereby establishing a tangible link 
between classical and quantum mechanics. In addition, whereas spectral analysis methods utilize quantum-inspired 
mathematical frameworks to describe classical systems, the current research utilizes classical mechanics itself in 
describing quantum processes, offering an alternative perspective regarding the correspondence of quantum and 
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classical worlds. This force-field-induced fluctuation model provides a novel insight into the essential relation between 
quantum and classical mechanics. 

Table 1 Comparative Analysis of Approaches. 

Approach Key Idea How It Relates to Our Work Key Limitation 

Koopman-von Neumann 
Mechanics 

Classical observables in 
Hilbert space 

Preserves determinism, uses 
wave functions like QM 

No energy quantization, lacks Born’s 
rule 

Bohmian Mechanics 
Hidden variable theory with 

pilot waves 
Uses deterministic 

trajectories like our model 

Requires nonlocality, does not 
naturally explain measurement 

collapse 

Path Integral (Feynman) Sum over all possible paths 
Both use trajectories, but 

ours is force-based 
No deterministic interpretation 

de Broglie’s Matter Waves 
Particles have intrinsic wave 

properties 
Similar use of the energy-

wavelength relation 
Does not explicitly derive the 

Schrödinger equation 
Magri et al. (Spectral 

Theory in Fluid Mechanics) 
Quantum spectral methods 
applied to classical systems 

Both explore quantum-
classical connections 

Lacks a mechanistic derivation of 
quantum effects 

Discussion 

Engineering Applications of the Proposed Model 

The primary aim of this research is to examine a deterministic model in quantum mechanics, but the potential impact 
of this research goes beyond theoretical physics. The suggested force-field-induced fluctuation model offers potential 
avenues for application in engineering and technology, specifically in fields where quantum mechanics is particularly 
important. 

Quantum Computing and Information Processing 

The deterministic trajectory-based model has the potential to provide alternative computational models for simulating 
quantum phenomena via classical mechanics. The advancement can contribute to better quantum simulation methods 
that simplify algorithms applicable to quantum cryptography, quantum optimization, and machine learning. 

Nanomaterials Science and Semiconductor Technology 

The model's ability to explain wave-like effects through deterministic fluctuations can lead to the development of 
quantum dots, semiconductor materials, and nanoelectromechanical systems (NEMS). Treating quantum-like behavior 
from the perspective of classical force fields can enhance simulations in nanoscale engineering and enable the 
development of low-energy quantum devices. 

Precision Metrology and Sensors 

Since the model explains quantum fluctuations through deterministic force interactions, it is reasonable to apply it to 
high-precision measurement devices. Atomic clocks, magnetometers, and optical sensors can potentially be improved 
using an advanced insight into matter-wave interactions, thus yielding better precision in time measurement and the 
construction of quantum-improved sensing technology. 

Optical and Photonic Engineering 

The force-field theory of wavefunction motion can find applications in the areas of wave optics, fiber optics, and 
photonic signal processing. A classical understanding of wave-particle interactions can lead to new perspectives in the 
improvement of laser coherence, optical interference devices, and photonic computers. Quantum Thermal Conduction 
and Energy Structures. As the model incorporates an energy-based force-field mechanism, it may shed new light on 
quantum thermodynamics and heat transport at the nanoscale. Possible applications are energy-efficient nanodevices, 
thermal management in quantum systems, and improved quantum energy harvesting technology. By extending classical 
mechanics to quantum effects via force-field interactions, this model presents a new paradigm for the application of 
theoretical physics in engineering practice. Research in these directions can culminate in the development of quantum-
inspired computational techniques, material design at the nanoscale, and the development of high-precision quantum 
sensing devices. 
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Limitations and Future Work 

Although this work offers a novel strategy for unifying classical mechanics and the Schrödinger equation, certain 
limitations result from assumptions and idealized situations. It is important to recognize such limitations to establish 
the boundaries and applicability of the model proposed. 

1. Idealized Force Field Assumption 
 The paper describes a force field according to quantum mechanics to unify classical mechanics and the 

Schrödinger equation. The proposed force field, however, is theoretical and lacks experimental confirmation. 
The conjecture that its magnitude is dictated by Planck's constant and inversely proportional to distance may 
not hold for every quantum system. Research in the future should try to determine if such a force field can 
be formulated from first principles or manifest in experimental situations. 

2. Virtual Axis and Extension of Dimensions 
 The concept of a virtual axis as a projection aid for mapping material fluctuations into a higher-dimensional 

framework is essentially a theoretical model, rather than an empirically measurable phenomenon. However, 
much of it supplies a mathematical model for a wave-particle explanation; its physical meaning is ambiguous. 
Further investigation is required to ascertain whether this dimension has any measurable effects or whether 
an alternative approach might yield an equivalent explanation without invoking extra dimensions. 

3. Applicability to Real Quantum Systems 
 The research is primarily centered on a trajectory-based understanding of quantum events. Nonetheless, it 

overlooks some fundamental principles of quantum mechanics, including entanglement and nonlocality. 
Furthermore, it does not discuss the interaction of more than a single quantum particle, which is relevant to 
most quantum systems. In the future, the research needs to extend the model to the multi-particle case and 
establish whether it can shed light on quantum correlations. 

4. Classical Interpretation of Quantum Mechanics 
 The model tries to derive the Schrödinger equation from Newtonian mechanics principles; however, quantum 

mechanics is inherently different due to its probabilistic nature. The deterministic path approach doesn't fully 
account for quantum uncertainties, superposition, and wavefunction collapse. Future research must 
investigate whether it is possible to reformulate the model to incorporate probabilistic behavior in a way that 
is consistent with classical mechanics. 

5. Discrete Transitions and Quantization of Energy 
 One of the hallmark characteristics of quantum mechanics is the quantized energy levels. The research 

demonstrates that transitions in energy levels are due to trajectory changes; however, it fails to give a 
satisfactory reason for the quantization process. In quantum mechanics, discrete energy levels are due to 
boundary conditions and wavefunction solutions instead of trajectory changes. A more meaningful 
explanation of the quantization phenomenon can be obtained by examining the relationship between the 
suggested force field and boundary conditions.  

6. Lack of Experimental Validation 
 In spite of the methodological soundness of the proposed method, there is a lack of empirical research. 

Experimental data or numerical simulations that back up the assertion that the derived equations correctly 
model quantum phenomena are missing. Research in the future must involve simulations that contrast the 
predictions of the model with well-known quantum mechanical outcomes, as well as possible laboratory tests 
aimed at determining the viability of the force field hypothesis. 

 

Future Research Directions 

Further research is required to verify and extend the force field-driven model proposed here. Empirical verification 
should be focused on interferometry experiments and simulations aimed at testing the appearance of quantum effects 
under controlled force fields with high precision. Extension of the model to multi-particle systems and entanglement 
effects will determine its applicability to complex quantum effects. Treatment of energy quantization and quantum 
tunneling within this theoretical framework can strengthen its consistency with well-established principles of quantum 
mechanics. 

From the engineering side, the investigation of applications in quantum computing, nanomaterials, and quantum 
measurement methods may enable substantial progress. On the cosmological side, possible implications such as 
connections to dark matter or large-scale quantum fluctuations may lead to a better understanding of fundamental 
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physics. By exploring these avenues, the model's validity and applicability can be tested further, providing new insight 
into the relationship between quantum and classical systems. 

Conclusion 

Classical mechanics provides a framework to explain the occurrence of matter fluctuations in the micro world and 
develop dynamic expressions that are equivalent to Schrödinger's equation. At the very least, it can simulate material 
fluctuations based on classical mechanics. 

While the wave equation presented in this paper may not be proven to encompass all phenomena of quantum 
mechanics fully, it serves as a valuable tool for learning and comprehending Schrödinger's equations. Furthermore, 
classical mechanics, being well-established, offers a more concise and easily understandable wave equation with a clear 
and intuitive physical significance. 

There exists a possibility that an unknown force field influences material fluctuations. Even if the force field explored in 
this paper is incorrect, it is still significant in demonstrating that the Schrödinger equation can be derived under a specific 
force field. Therefore, research on the relationship between classical and quantum mechanics should not be stopped. 

The derivation of the material fluctuation equation, based on classical mechanics, primarily revolves around establishing 
a force field that aligns with the observed fluctuation phenomenon. The force field investigated in this paper is more 
likely can reasonably account for certain physical phenomena. Consequently, further extensive research holds great 
scientific value and necessity. 
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