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Abstract 

In recent years, the development and implementation of artificial intelligence (AI) have attracted tremendous attention. The 
implementation of active control systems for building structures can be improved by using an AI controller. Non-AI controllers such 
as the Linear Quadratic Regulator (LQR) controller require full state variables of the structure to be measured, which is rarely feasible. 
To address this problem, two AI models, namely, artificial neural network (ANN) and fuzzy logic (FL), have been tried as AI-based 
controller in various studies. In the present study, both AI models were investigated to see their practicality and effectiveness. The 
AI models were implemented to control an active mass damper (AMD) in a three-story prototype-sized building. The simulation 
results from the structure with an LQR controller were used as benchmark and training data for the AI models. The results of the 
study demonstrated that although both AI models could reduce the structure responses, ANN was more practical and effective 
compared to FL as an AI-based controller for the given structure. Furthermore, the effectiveness of an ANN-based AMD was also 
shown by the experimental results. 
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Introduction 

Active control systems can be implemented in structures to reduce the responses from dynamic loads. The control 
forces in active control systems are determined by a control algorithm. One of the known algorithms that has been used 
in control systems is the Linear Quadratic Regulator (LQR) algorithm, which minimizes the objective function with 
corresponding weight matrices for responses and forces. State variables in the form of velocities and displacements are 
required to calculate the control forces using LQR. However, the number of sensors used in structures is usually limited, 
so the measurement of full-state variables is rarely feasible. Therefore, a state observer is needed to handle the limited 
number of sensors, although it also adds computation time and delay in the control system [1].  

There have been various developments in using artificial intelligence (AI) based controllers to address the problems that 
arise from LQR-based controllers. Pei-Ching Chen et al. [12] studied a machine learning-based control using Multi-Layer 
Perceptron (MLP) and Autoregressive Exogenous (ARX) models for a ten-story building validated with an experiment 
using a single degree of freedom (SDOF) model. The study demonstrated that both MLP and ARX models were able to 
learn and emulate LQR optimized with Symbiotic Organism Search (SOS). Bani and Ghaboussi [3] utilized a neural 
network control algorithm on a nonlinear steel frame model with three degrees of freedom. Moreover, Bani [4] 
employed a neural network controller to reduce wind-induced vibrations in a tall building using an active mass damper. 
An Artificial Neural Network (ANN) has also been successfully applied to control a bridge by Cho [5]. Other ANN-based 
controller studies, conducted by Kim et al. [6], Kim and Lee [7], also Rao and Datta [8], have shown great results.  
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Another control model was studied by Pourzeynali et al. [9]. Their study used a Genetic algorithm and Fuzzy Logic (GFLC) 
for an Active Tuned Mass Damper (ATMD) implemented in an eleven-story building. Numerically, it showed that GFLC 
is effective in reducing the building’s response. A fuzzy controller has also been studied by Samali et al. [10] to reduce 
the crosswind response of a 76-story tall building. Furthermore, optimization and tuning of a fuzzy logic controller with 
multiple objectives has been studied by Ahlawat and Ramaswamy [11].  

Most of the studies focused solely on either a neural network model or fuzzy logic. Furthermore, many of these studies 
either lacked experimental validation or only conducted an experiment on a single-degree-of-freedom model. This 
paper investigated the effectiveness of both a fuzzy logic controller and a neural network-based controller for an active 
mass damper. The study involved implementing a recently developed optimization algorithm, SOS, on a fuzzy logic 
controller and conducting experiment validation on a three-story building model. The objectives consisted of designing 
AI-based control models for a structure; analysing the practicality and effectivity of the corresponding control models; 
and determining the optimal control AI-based control model and validating it with experiments.  

Numerical Modeling 

Equation of Motion 

The equations of motion for an n-degrees-of-freedom (NDOF) shear building equipped with an active mass damper 
(AMD) on top of the building can be formulated as follows in Eq. (1): 

𝐌𝐱̈ + 𝐂𝐱̇ + 𝐊𝐱 = 𝛄𝑢(𝑡) + 𝛅𝑥̈𝑔(𝑡)                        (1) 

where M, C, and K are n x n matrices with respect to the mass, damping, and stiffness of the building, respectively; x(t) 
is a n x 1 vector that represents the absolute displacements at each floor; u(t) is the control force of AMD; 𝛄 is a n x 1 
vector that indicates the location on which the control force of AMD is imposed to the structure; 𝛅 is a n x 1 vector with 
all elements equal to negative mass of each story; and 𝑥̈𝑔 is the ground acceleration. If the states are defined as 𝐙(t) =

[𝐱(t) 𝐱̇(t)]T, then the state-space formulation of the structure can be written as follows in Eq. (2): 

𝐙̇(𝑡) = 𝐀𝐙(𝑡) + 𝐁𝐮𝑢(𝑡) + 𝐁𝐫𝑥̈𝑔(𝑡)                      (2) 

where the system matrix A, the control force distribution matrix Bu, and the disturbance location matrix Br are expressed 
in Eq. (3): 

𝐀 = [
𝟎 𝐈

−𝐌−𝟏 −𝐌−𝟏𝐂
] ;   𝐁𝐮 = [

𝟎
𝐌−𝟏𝛄

] ;   𝐁𝐫 = {
𝟎

𝐌−𝟏𝛅
}                  (3) 

Structure Description 

A three-story prototyped-sized building model was used in this study, as shown in Figure 1.  

 

 The three-story building model. 
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The specimen was a small-scale aluminium alloy structure with three degrees of freedom and the size of each floor was 
835 mm x 300 mm x 40 mm, the height of each floor was 350 mm, and the total building height was 1050 mm. The 
weight of the AMD was 20 N, and the lump masses of each floor were 16, 12, and 34 kg, respectively. A finite element 
model of the building was built using MATLAB and the numerical simulation was run using Simulink. 

System Identification 

System identification was carried out by shaking the structure using a shake table with a 0-10 Hz band-limited white and 
noise and peak ground acceleration (PGA) of 0.2 m/s2 for 240 seconds with a 1000 Hz sampling frequency. Curve fitting 
was used to identify the dynamic properties of the structure. The frequency response function (FRF) for point p with 
the excitation force at point q for mode s can be expressed as in Eq. (4): 

|𝐺𝑝𝑞(Ω)| = ∑ 𝜙𝑝𝑟𝜙𝑞𝑟 {
1

√(𝜔𝑟
2−Ω2)2+(2Ω𝜔𝑟𝜉𝑟)

2
}𝑠

𝑟=1                       (4) 

where 𝜙𝑝𝑟 is the mode shape value at point p for the rth mode; 𝜙𝑞𝑟 is the mode shape value at point q for the rth mode; 

𝜔𝑟 is the natural frequency of the structure for rth mode; 𝜉𝑟  is the damping ratio of the structure for the rth mode. The 
identified dynamic properties of the building can be seen in Table 1. 

Table 1 Dynamic properties of the structure. 

 1st Mode 2nd Mode  3rd Mode 

Natural Frequency (Hz) 1.43 5.41 7.71 
Damping Ratio (%) 0.92% 0.51% 0.57% 

Model Updating 

A direct updating method used by Jezequel and Setio [11] was implemented to update the finite element model based 
on the identified properties. The equation for direct updating method for mass matrix can be formulated as in Eq. (5): 

𝐦𝐀 = 𝚽𝐗
𝐓𝐌𝐀𝚽 

𝐌𝐔 = 𝐌𝐀 + 𝐌𝐀𝚽𝐗𝐦𝐀
−𝟏(𝐈 − 𝐦𝐀)(𝐦𝐀)−𝟏𝚽𝐗

𝐓𝐌𝐀                           (5) 

Where 𝐌𝐀 is the mass of numerical models and 𝐌𝐔 is the updated mass of numerical models. Then, the equation for 
direct updating of the stiffness matrix can be expressed as in Eq. (6): 

𝚫 =
1

2
𝐌𝐀𝚽𝐗(𝚽𝐗

𝐓𝐊𝐀𝚽𝐗 + 𝛚𝐗
𝟐)𝚽𝐗

𝐓𝐌𝐀 − 𝐊𝐀𝚽𝐗𝚽𝐗
𝐓𝐌𝐀                         (6) 

𝐊𝐔 = 𝐊𝐀 + (𝚫 + 𝚫𝐓)  

Similar to the mass matrix, 𝐊𝐀 is the stiffness matrix of the numerical models and 𝐊𝐔 is the updated stiffness matrix of 
the numerical models. The FRF of the updated model and the physical model can then be compared. Figure 2 shows 
both FRFs are close to each other. Therefore, the updated finite element model could represent the real building. 

 

 FRF comparison between the updated finite element model and the experiment result. 
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Control System Design 

Linear Quadratic Regulator (LQR) 

The optimal control force from linear control theory can be stated as in Eq. (7): 

𝐮(𝑡) = −𝐆𝐙(𝑡)                         (7) 

The G matrix is known as the gain matrix obtained from the optimal control algorithm. The optimal control force is 
determined by minimizing performance index J considering the system constraints. The form of performance that is 
usually chosen is the quadratic form of the responses and forces shown in Eq. (8): 

𝐽 =
1

2
∫ [𝐙(𝑡)𝑇𝐐𝐙(𝑡) + 𝐮(𝑡)𝑻𝐑𝐮(𝑡)] 𝑑𝑡

𝑡𝑓

𝑡0
                        (8) 

where Q is the weight matrix for system response and R is the weight matrix for the control force. The values of Q and 
R are chosen in such a way that good response reductions and an efficient control force are achieved. The weight 
matrices used in this study were: 

𝐐 =

[
 
 
 
 
 
1

0
1

0
1

0 ]
 
 
 
 
 

;  𝐑 = 5 × 10−7 

Determination of the optimal control can be viewed as an optimization problem. The solution to the optimal control 
force can be stated as follows: 

𝐮(𝑡) = −𝐆𝐙(𝑡)  = −𝐑−𝟏𝐁𝐮
𝐓𝐏(𝑡)𝐙(𝑡)                         (9) 

The P(t) matrix, referred to as the Riccati matrix, can be determined by solving Eq. (10): 

𝐏𝐀 + 𝐀𝐓𝐏 − 𝐏𝐁𝐮𝐑
−𝟏𝐁𝐮

𝐓𝐏 + 𝐐 = 𝟎                       (10) 

Thus, the gain matrix used for this study was: 

𝐆 = 104[−0.113 −3.462 2.178 0.019 −0.045 0.1197] 

Artificial Neural Network (ANN) based Controller 

In conventional methodologies, the Linear Quadratic Regulator (LQR) determines the control force through full state 
feedback, which is rarely feasible in practical scenarios. Consequently, an alternative function or model is needed to 
replace the LQR. State of the art methods for time series prediction in recent years use recurrent neural network (RNN) 
architectures. However, those structures are more complex and computationally more expensive compared to a basic 
neural network architecture like a multilayered perceptron. Thus, by following recent research conducted by Pei-Ching 
Chen et al. [2], a model that is simpler than RNN, based on autoregression with exogenous input (ARX), was chosen in 
this study. The ARX model represents a neural network architecture where observations from previous time-steps are 
employed to forecast the current value. The ARX network can be formulated as follows: 

𝑢(𝑡) = 𝑓 (
𝐮(𝑡 − 1), ⋯ , 𝐮(𝑡 − 𝑑𝑢)

𝐱̈(𝑡), ⋯ , 𝐱̈(𝑡 − 𝑑) 
)      (11) 

The ARX model utilizes an open-loop method during the training phase, akin to that of a multilayer perceptron and uses 
a closed-loop model when implemented as a controller, as illustrated in Figure 3.  

 

 Autoregressive exogenous model. 
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The ARX architecture chosen for this study was 7 × 20 × 20 × 20 × 1, where the inputs were two timesteps of acceleration 
on each floor and the control force at t-1. The inputs were normalized to ±1 and the neural network was trained using 
responses and force of the structure with LQR experiencing a random earthquake with 0.4 m/s2 peak acceleration. The 
parameters for training the neural network were: 

1. All hidden layer’s activation function = linear 
2. Data splitting = 70:10:10 (training, validation, test) 
3. Epoch = 1000 
4. Initial learning rate = 0.00001 
5. Loss function = mean squared error 
6. Optimizer = Adam 
7. Batch size = 128 

The training process lasted less than an hour. 

 

 Training process of the ARX model. 

Fuzzy Logic (FL) based Controller  

Fuzzy set theory can be used to deal with uncertain phenomena in real-world applications. The theory enables objects 
to have any degrees of membership within a set. Fuzzy logic theory can be implemented in a controller to determine 
control forces. 

 

 Fuzzy logic controller components. 
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The components of the fuzzy logic controller are: a fuzzifier (the measured inputs in the control process will be 
converted into linguistic value based on the membership functions), fuzzy rules (the collection of the control rules), a 
fuzzy inference engine (the unit to infer the control action from given inputs), and a defuzzifier (the inferred fuzzy control 
action will be converted to control value). 

Developing a Fuzzy Logic Controller (FLC) typically demands specialized expertise. Thus, a metaheuristic algorithm can 
be used to help tuning the fuzzy logic controller. There are various metaheuristics algorithms, including genetic 
algorithm (GA) [12], Particle Swarm Optimization (PSO) [13] and Symbiotic Algorithm Search (SOS). SOS, developed by 
Cheng and Prayogo [16], is a recent metaheuristic algorithm and has been shown to perform relatively well compared 
to other similar algorithms and is simple to implement. Consequently, the SOS algorithm was selected for this study. 

The SOS algorithm is a metaheuristic algorithm inspired by symbiosis between organisms to solve optimization 
problems. It consists of three phases (behaviours), i.e., the mutualism phase, the commensalism phase, and the 
parasitism phase. The mutualism phase modifies two candidate solutions based on the difference between the currently 
best solution and the difference between those two candidates. The commensalism modifies a candidate solution 
according to the difference between the currently best solution and the other candidate (organism). Lastly, the 
parasitism phase modifies an existing candidate solution randomly to enable the exploration of different regions from 
the solution field.  

The inputs for the fuzzy logic controller in this study were acceleration of the top floor for time t, t-1, and control force 

for t-1 (𝑥3̈(𝑡), 𝑥3̈(𝑡 − 1), 𝑢(𝑡 − 1)). The fuzzifier consists of a membership function bounded in [-1,1] with five subsets 

(LN = Large Negative; N = Negative; Z = zero; P = Positive; LP = Large Positive) implemented for the three inputs. 

 

 Membership function for control force [t-1]. 

There are several fuzzy inference systems, such as Mamdani [14] and Sugeno [15]. Mamdani’s system possesses rule 
bases that are more intuitive and easier to comprehend, making them ideal for expert system applications. On the other 
hand, Sugeno’s system is computationally more efficient and more suitable for control and optimization techniques. 
Therefore, Sugeno’s system was chosen for this study. 

Sugeno’s inference system’s output for each rule consists of multiplication of the rule weight and the linear function 𝑧𝑖  
of the corresponding output rules. It can be represented as in Eq. (12): 

𝑧𝑖 = 𝑏𝑖𝑥̈3(𝑡 − 1) + 𝑐𝑖𝑥̈3(𝑡) + 𝑑𝑖𝑢(𝑡 − 1) + 𝑒𝑖                    (12) 

The parameters 𝑏𝑖 , 𝑐𝑖 , 𝑑𝑖, the normalization factor for the inputs, and parameter a1 in Figure 6 were optimized using 
SOS. Parameters a2 and a3 for input 𝑥3̈(𝑡) and 𝑥3̈(𝑡 − 1), respectively were treated the same.   

The objective function used for SOS was in Eq. (13): 
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𝐹𝑜𝑏𝑗 = 𝑚𝑖𝑛 (
max(𝑥3,𝑓𝑢𝑧𝑧𝑦)

max(𝑥3,𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑)
√

1

𝑁
∑ (𝑢𝑓𝑢𝑧𝑧𝑦,𝑖 − 𝑢𝐿𝑄𝑅,𝑖)

𝑁
𝑖=1

2
)                     (13) 

where 𝑥3,𝑓𝑢𝑧𝑧𝑦 and 𝑥3,𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑 , represent the absolute acceleration of the third (top) floor for a structure with fuzzy 

controller and without active mass damper, respectively. Meanwhile,  𝑢𝑓𝑢𝑧𝑧𝑦 and  𝑢𝐿𝑄𝑅  are the control forces generated 

by FLC and LQR. The parameters of SOS were 10 organisms and 20 iterations. The optimization process lasted about 6 
hours. 

 

 Optimization process of the FLC model’s parameters. 

Numerical Result and Discussion 

Time Domain 

The performances of the AI-based controllers were assessed by subjecting the structure to eight different earthquakes, 
as listed in Table 2. Particularly for the Kobe earthquake, the dominant frequency is close to the natural frequency of 
the structure’s first mode. Thus, the response of the structure due to the Kobe earthquake will generally be greater than 
for the other earthquakes. The earthquakes were normalized to have a peak with 0.4 m/s2 and the simulations were 
run using a 200 Hz sampling rate. Most earthquakes have a frequency of less than 20 Hz. Thus, the chosen sampling rate 
was considered adequate to capture the majority of earthquake frequencies. Additionally, the sampling rate also 
fulfilled Nyquist’s criteria, which states that the sampling frequency must be more than twice the highest frequency of 
the signal captured. 

Table 2 Earthquakes used in the study. 

 Earthquake Dominant Frequency [Hz] 

 El Centro 1.47 
 Chi-Chi 1.32 
 Chuetsu Oki 0.70 
 Kobe 1.43 
 Kumamoto 4.89 
 Montenegro 1.78 
 Parkfield 1.66 
 Darfield 0.71 

Seismic performance of the structure can be measured in various ways, ranging from drift ratio to the hysteretic curve, 
which is only applicable for a nonlinear model [18]. In this study, a linear analysis was conducted, and five performance 
indices were used in the numerical and experimental simulation. Four of the five performance indices were adopted 
from Dyke et al.  [19] with performance 4 (J4) as an addition. The performance indices were: 

1. Relative displacement 

𝐽1 = max
𝑡,𝑖

(
|𝑥𝑖(𝑡)|

𝑥𝑚𝑎𝑥,𝑢𝑛𝑐

)                          (14) 

2. Inter-story drift 
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 𝐽2 = max
𝑡,𝑖

(
|𝑑𝑖(𝑡) ℎ𝑖⁄ |

(𝑑 ℎ⁄ )𝑚𝑎𝑥,𝑢𝑛𝑐 
)                       (15) 

3. Peak acceleration 

 𝐽3 = max
𝑡,𝑖

(
|𝑥̈𝑎𝑖(𝑡)|

𝑥̈𝑎𝑖,𝑚𝑎𝑥,𝑢𝑛𝑐 
)                       (16) 

4. Overall acceleration 

 𝐽4 = max
𝑖

(
𝑅𝑀𝑆(𝑥̈𝑎𝑖(𝑡))

𝑅𝑀𝑆(𝑥̈𝑎𝑖,𝑢𝑛𝑐(𝑡))
)                       (17) 

5. Control forces 

𝐽5 = max
𝑡,𝑖

(
|𝑢(𝑡)|

𝑊 
)                           (18) 

where 𝑥𝑖(𝑡) is the relative displacement of the ith floor during the excitation; 𝑥𝑚𝑎𝑥,𝑢𝑛𝑐  is the maximum displacement of the 

uncontrolled structure; 𝑑𝑖(𝑡)/ℎ𝑖  is the drift ratio of the ith floor during excitation; (𝑑 ℎ⁄ )𝑚𝑎𝑥,𝑢𝑛𝑐 is the drift ratio of the ith 

floor of the uncontrolled structure; 𝑥̈𝑎𝑖(𝑡) is the absolute acceleration of the ith floor; 𝑥̈𝑎𝑖,𝑢𝑛𝑐(𝑡) is the absolute 

acceleration of the ith floor of the uncontrolled structure; 𝑢(𝑡) is the control force of AMD; and 𝑊 is the weight of the 
structure. 

Tables 3 and 4 and list the performance indices for the fuzzy logic controller and the ANN-based controller, respectively. 
The tables show that the ANN-based controller generally reduced the structure response by 27.6% (the average value 
of J1-J4) better than the FL-based controller. On the other hand, the ANN-based controller needed 26.5% more force 
than the FL-based controller.   

Table 3 Seismic control performance of ANN-based AMD in numerical study. 

Earthquake J1 J2 J3 J4 J5 

El Centro 0.496 0.441 0.573 0.298 0.012  

Chi-Chi 0.708 0.692 0.689 0.290 0.008  

Chuetsu Oki 0.634 0.604 0.450 0.451 0.013  

Kobe 0.642 0.611 0.551 0.223 0.019  

Kumamoto 0.603 0.540 0.516 0.429 0.013  

Montenegro 0.506 0.516 0.449 0.308 0.014  

Parkfield 0.737 0.731 0.760 0.318 0.011  

Darfield 0.620 0.588 0.731 0.406 0.008  

Average 0.618 0.590 0.590 0.340 0.012  

Table 4 Seismic control performance of FL-based AMD in numerical study. 

Earthquake J1 J2 J3 J4 J5 

El Centro 0.515 0.563 0.823 0.366 0.009  

Chi-Chi 0.850 0.830 0.842 0.459 0.009  

Chuetsu Oki 0.737 0.745 0.741 0.585 0.012  

Kobe 0.873 0.874 0.910 0.737 0.012  

Kumamoto 0.749 0.705 0.730 0.707 0.007  

Montenegro 0.844 0.845 0.879 0.571 0.012  

Parkfield 0.938 0.948 0.871 0.400 0.012  

Darfield 0.855 0.874 0.891 0.503 0.007  

Average 0.795 0.798 0.836 0.541 0.010  

With significantly less training time, the ANN-based controller performed better than the FL-based controller. Despite 
its low effectiveness, FLC still reduced the structure’s responses with smaller forces than the ANN controller. 

Frequency Domain 

The responses in the time domain can be converted to the frequency domain to investigate the changes in the dynamic 
properties of the structure. Figure 8 shows the comparison of FRFs between the uncontrolled, ANN-controlled, and 
fuzzy-controlled structures. 
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 Frequency response function comparison for ELC. 

The changes in natural frequency shown in Table 5 are small compared to changes in the damping ratio of the structure 
shown in Table 6. Both models gave an increase in damping ratio, with a significant impact in the first mode of the 
structure followed by its second and third modes. In the ANN-based controller, increasing demand led to an increase in 
damping ratio. An abnormality can be seen in FLC, where the damping ratio increase in response to the Kobe 
earthquake, with the largest demand due to resonance, was the smallest. Therefore, the ANN-based controller for AMD 
provides more consistency in reducing structure responses. 

Table 5 Natural frequency of the controlled structure. 

EQ 
Uncontrolled ANN Fuzzy 

f1[Hz] f2[Hz] f3[Hz] f1[Hz] f2[Hz] f3[Hz] f1[Hz] f2[Hz] f3[Hz] 

El Centro 

1.43 5.41 7.71 

1.41 5.53 7.66 1.40 5.38 7.66 
Chi-Chi 1.40 5.51 7.71 1.37 5.41 7.70 

Chuetsu Oki 1.39 5.52 7.68 1.38 5.38 7.69 
Kobe 1.39 5.53 7.71 1.43 5.40 7.70 

Kumamoto 1.40 5.52 7.70 1.38 5.39 7.70 
Montenegro 1.40 5.40 7.67 1.40 5.40 7.67 

Parkfield 1.41 5.53 7.70 1.36 5.40 7.70 
Darfield 1.40 5.52 7.71 1.37 5.40 7.71 
Average 1.40 5.51 7.69 1.39 5.40 7.69 

Table 6 Damping ratio of the controlled structure. 

EQ 
Uncontrolled ANN Fuzzy 

ζ1[%] ζ2[%] ζ3[%] ζ1[%] ζ2[%] ζ3[%] ζ1[%] ζ2[%] ζ3[%] 

El Centro 

0.92 0.51 0.57 

6.47 1.96 1.42 3.45 1.55 1.17 
Chi-Chi 5.08 2.07 0.85 3.41 0.90 0.71 

Chuetsu Oki 5.10 2.02 1.16 3.82 1.11 1.03 
Kobe 6.71 1.82 0.54 1.51 0.85 0.23 

Kumamoto 6.64 2.24 0.89 3.55 1.25 0.67 
Montenegro 5.26 2.03 1.10 4.43 0.71 0.97 

Parkfield 4.35 1.41 0.45 2.06 0.61 0.19 
Darfield 6.44 2.21 0.77 3.84 1.03 0.62 
Average 5.76 1.97 0.90 3.26 1.00 0.70 

In the design phase, the FL controller needed considerably more time to optimize its parameters than the ANN controller 
(6 hours compared to less than 1 hour). In the numerical simulation, ANN also gave better performance and consistency 
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than FL. Although the FLC’s performance may be further improved by extending and improving the optimizing process, 
the FLC will need additional resources and time to an already long process. Correspondingly, training ANN is more 
straightforward and quicker than FLC. Therefore, the ANN-based controller was chosen as the best AI-based controller 
for an AMD and only the ANN-based controller was implemented in the experimental study. 

Experimental Result and Discussion 

Experimental Setup 

The experiment was conducted in a small-scale laboratory in the National Center for Research on Earthquake 
Engineering (NCREE) in Taipei, Taiwan. The experiment specimen was a three-story building with the AMD installed on 
the top floor, as shown in Figure 9.  

 

 Experimental setup. 

The AMD consisted of electric servo motors, driving screws, slide rails, and a mass slider. The shaking table was driven 
by a servo-hydraulic actuator with a maximum output force of 15 kN and a maximum stroke of ±125 mm. Five SDI high-
resolution MEMS accelerometers were used with the maximum capability ±25 m/s2 to measure the acceleration. The 
accelerometers were installed on the shaking table, on each floor, and on the AMD.   

The controllers were all constructed in MATLAB/Simulink to be able to control the hydraulic actuator and the AMD. The 
performance real-time target machine developed by Speedgoat shown in Figure 10 was used. The performance real-
time target machine is a real-time test system that supports Simulink and Simulink Real-Time. The system modules 
provided by Simulink Real-Time were connected to the host computer via TCP/IP network communication protocol I/O 
terminals that compiled the MATLAB/Simulink code into C language and loaded it onto the host to calculate and control 
the AMD.  

 

  Hardware and software setup in the experimental study. 
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In addition, SCRAMNet optical fiber shared memory was used to enable the performance of the real-time target 
machine and MTS FT- 100 to share memory and data. Therefore, the host could control the hydraulic actuator and 
electric motor AMD at the same time during the experiment.   

Result and Discussion 

The performance of the ANN-based controller from the experimental study can be seen in Table 7. The performance in 
the experimental study tended to be lower than in the numerical study. The main reason was that the force generated 
by the AMD in the experiment was unable to match the desired force by the controller, as shown in Figure 11. 

Table 7 Seismic control performance of ANN-based AMD in the experimental study. 

Earthquake J1 J2 J3 J4 J5 

El Centro 0.490 0.471 0.523 0.368 0.009  

Chi-Chi 0.697 0.638 0.660 0.391 0.006  

Chuetsu Oki 0.733 0.713 0.709 0.485 0.012  

Kobe 0.676 0.681 0.593 0.304 0.015  

Kumamoto 0.675 0.693 0.712 0.529 0.010  

Montenegro 0.670 0.659 0.640 0.425 0.014  

Parkfield 0.944 0.922 0.947 0.421 0.009  

Darfield 0.724 0.705 0.773 0.465 0.005  

Average 0.701 0.685 0.695 0.424 0.010  

 

  Command and achieved force for the Kobe Earthquake with 0.4 m/s2 PGA. 

Despite the differences, the ANN-based controller still showed the ability to reduce the structure’s responses with an 
average reduced performance of 18% and a 19% smaller force compared to the numerical results. 

Conclusions 

This study investigated two AI models, namely, artificial neural network (ANN) and fuzzy logic (FLC), for the controller 
of an active mass damper (AMD). In the design phase, the elapsed time for training ANN was considerably less than that 
for optimizing FLC. It was also evident that ANN provides better performance, as shown in the performance indices 
value from the numerical study. The ANN-based AMD also demonstrated better consistency, as shown in providing the 
highest damping ratio on the structure when excited with the highest demand earthquake, the Kobe earthquake. In 
contrast, the FL-based AMD provides the smallest damping ratio during the same earthquake. Therefore, the results for 
this specific structure in this study showed that ANN is a more straightforward AI model to be implemented as an AMD 
controller compared to FLC. Furthermore, this study successfully implemented and validated the ANN-based AMD 
through experimental studies using a prototype-sized three-story building. 
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