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Abstract 

Rockbursts are destructive accidents that often occur in underground mines. With the advancement of technology, machine learning 
has emerged as an alternative solution that can be used for rockburst mitigation. In this research, we classify rockburst events and 
their intensities in underground mines using two machine learning models: grey wolf optimization–support vector machine (GWO–
SVM) and extreme gradient boosting (XGBoost). Rockburst events are classified into two categories: Existent and None. Meanwhile, 
the intensities are classified into three categories: weak, moderate, and strong. The implementation used 476 cases of rockbursts 
with six variables: maximum tangential stress, uniaxial compressive strength, uniaxial tensile strength, stress coefficient, rock 
brittleness coefficient, and elastic strain index. Both models can better predict the “Existent” rockburst class with a “Weak” intensity 
compared with the other intensity classes. The performances of the models are evaluated using different proportions of training 
data, ranging from 50% to 90%. Both models have the same performance for rockburst event classification with 97.53% accuracy, 
0.9444 precision, 0.9846 recall, and 0.9628 F1-score. Meanwhile, for intensity classification, XGBoost outperforms GWO-SVM with 
its 88.24% accuracy, 0.8413 precision, 0.9137 recall, and 0.8651 F1-score. 
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Introduction 

As the need for mineral resources continues to rise and the industry exhausts easily accessible reserves, the mining 
industry increasingly focuses on enhancing extraction and metal recovery methods. This has led to mining operations 
extending to greater depths beneath the Earth’s surface (Lippmann-Pipke et al., 2011). From 2018 to 2021, global 
mineral consumption showed a relative upward trend (Our World in Data, 2023), indicating that the global demand for 
mineral resources will continue to grow. To meet this growing need, underground mining must probe deeper geological 
formations to find potential resources. As the depth of mines increases, the overburden pressure increases, resulting in 
higher stress levels within rock masses (Singh et al., 2010). This, in turn, increases the possibility of occupational 
accidents due to intensified environmental hazards (Xue et al., 2019).   

Historically, between 1900 and 2022, more than 85,000 workers died due to mining accidents (Mine Safety and Health 
Administration, 2023). After the first recorded case in 1738 in Britain, rockbursts have become one of the most common 
underground mining accidents, especially in China (Xue et al., 2020). Between 1933 and 2018, China recorded more 
than 3,000 rockburst cases in 177 underground mines spread across more than 20 provinces in China (Wang et al, 
2019).  Meanwhile, from 1936 to 1993, the United States reported more than 172 cases of rockbursts, with more than 
78 deaths (Ullah et al., 2022).  Rockbursts are sudden and violent rock failures involving the ejection of rock fragments 
and rapid release of energy, typically associated with seismic events, and causing severe damage to underground 
structures (He et al., 2023). They are responsible for many mining accidents, damaged excavations, financial 
losses, and operational disruptions in the mining facilities (Adach-Pawelus & D. Pawelus, 2021).  
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Given the above context, the significance of identifying effective preventive measures cannot be overstated. By 
proactively addressing rockburst risks through research, innovation, and industry-wide adoption of safety protocols, the 
mining sector can not only protect the lives and well-being of its workforce but also safeguard its long-term 
viability by reducing the frequency of accidents and the substantial financial toll associated with these catastrophic 
events.  Along with technological development, machine learning has emerged as an alternative solution to various real-
world problems. It is often used in predicting and classifying problems in various fields, including engineering (James et 
al., 2013). In this respect, Wang et al. (2022), Ullah et al. (2022), and Zheng et al. (2023) used extreme gradient boosting 
(XGBoost) to classify the intensities of rockbursts. They demonstrated that XGBoost is a viable machine learning model 
given its great ability to classify rockburst intensities. Ullah et al. (2022) utilized XGBoost to classify rockburst intensities 
using 93 observations of rockburst cases and six features that affect rockbursts: cumulative number of events, event 
rate, log cumulative release energy, log energy rate, log cumulative apparent volume, and log apparent volume rate. 
The rockburst intensities were divided into four classes (none, slight, moderate, and intense). The proportion of the 
target classes was considered slightly imbalanced, with 36%, 23%, 27%, and 14% in the none, slight, moderate, and 
intense classes, respectively. There were four evaluation metrics: accuracy, precision, recall, and F1-score. Using t-
distributed stochastic neighbor embedding and K-means clustering, XGBoost achieved 88% accuracy, 0.91 precision, 
0.88 recall, and 0.88 F1-score.  

Li et al. (2023) used eight types of support vector machines (SVMs) to classify coal burst intensity classes, 95 
observations of coal burst case, and four features that affect coal bursts: dynamic failure time, elastic energy index, 
impact energy index, and uniaxial compressive strength. The intensities of coal bursts in this research were divided 
into three classes: none, weak, and strong. The proportion of the target classes was considered imbalanced, with 6.32%, 
47.37%, and 46.32% in the none, weak, and strong classes, respectively. This previous work used three metrics: 
accuracy, F1-score, and kappa coefficient. Grey Wolf Optimization (GWO–SVM) emerged as the best model with 98.9% 
accuracy, an F1-score of 0.993, and a kappa coefficient of 0.98.  

Other studies on rockburst intensity classification have been conducted using various machine learning models. For 
example, Wojtecki et al. (2021) using 150 rockburst observations, applied various algorithms, such as decision tree 
(DT), random forest, gradient boosting (GB), and artificial neural network, to evaluate rockbursts in the upper Silesian 
coal basin in Poland. Zhou et al. (2012) using 132 rockburst observations, classified long-term rockbursts by adopting 
the SVM model, and their results were recommended for underground rockburst assessment.    

This paper classifies rockburst events in underground mines, along with their intensities using GWO–SVM 
and XGBoost. These rockburst events are classified as: existent and none, and their intensities are classified into four 
categories: none, weak, moderate, and strong. The data consists of 476 rockburst observations with six variables: 
maximum tangential stress, uniaxial compressive strength, uniaxial tensile strength, stress coefficient, rock brittleness 
coefficient, and elastic strain index. This study aims to support the mitigation of rockbursts in underground 
mining operations.   

In Section 2, the data and methodology of this research are described as follows: rockburst classification, the data used, 
and the methods. Section 3 presents the classification results of rockburst events and their intensities for each model. 
In Section 4, we provide an in-depth analysis in the discussion. Finally, the conclusion is drawn in Section 5.  

Data and Methodology 

Data 

Rockbust events are classified into two classes: (i) The Existent class refers to the presence of a rockburst event, 
regardless of its intensity. This class consists of three rockburst intensity classes: weak, moderate, and strong. 
(ii) The None class indicates the absence of rockburst events in underground mines. This class indicates a lack of 
significant fractures on the free face. Meanwhile, the weak rockburst class involves small specimens with minor 
fragment displacement and kinetic energy release. The moderate rockburst class shows deformations and fractures 
affecting the surrounding rocks and leading to the sudden release of a substantial amount of rock fragments. The 
strong rockburst class represents severe rock fractures, sudden ejections, powerful explosions, rumbling noises, 
persistent air blasts, and turbulent phenomena, with rapid expansion deep into the surrounding rock (He et al., 2023).  
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The dataset used in this study combined data from Zhou et al. (2012) and Xue et al. (2020), with 478 rockburst 
observations. As there were some missing values in the label column, which included three rockburst intensity classes 
(weak, moderate, and strong), data cleaning was performed. The final dataset consisted of 476 rockburst observations 
with imputed values for variables that affect rockburst intensity, including maximum tangential stress, uniaxial 
compressive strength, uniaxial tensile strength, stress coefficient, rock brittleness coefficient, and elastic strain index. 
Table 1 shows a sample of the dataset. 

Table 1 Sample of the dataset.  

Maximum 
Tangential 

Stress 

Uniaxial 
Compressive 

Strength 

Uniaxial 
Tensile 

Strength 

Stress 
Coefficient 

Rock 
Brittleness 
Coefficient 

Elastic 
Strain 
Index 

Intensity 

90.00 
90.00 
62.60 
55.40 
30.00 

170.00 
220.00 
165.00 
176.00 
88.70 

11.30 
7.40 
9.40 
7.30 
3.70 

0.53 
0.41 
0.38 
0.32 
0.34 

15.04 
29.73 
17.53 
24.11 
23.97 

9.00 
7.30 
9.00 
9.30 
6.60 

Moderate 
Weak 
Weak 

Moderate 
Moderate 

Maximum tangential stress occurs in an object or material when a load or force is applied, causing the material to 
distort. Uniaxial compressive strength is the ability of an object or material to withstand the pressure of an applied load 
or force parallel to its axial axis. Uniaxial tensile strength is the ability of an object or material to resist the pull of a load 
or force applied parallel to its axial axis. Meanwhile, the stress coefficient is the ratio between the maximum strength 
of a material and the force required to cause the material to fail or break. The rock brittleness coefficient is a numerical 
parameter used to measure the extent to which a rock is brittle or soft. Finally, the elastic strain index is a numerical 
parameter that measures the ability of a rock formation to withstand mechanical loads applied to the rock and produce 
elastic deformation. Figure 1 shows the distribution of various rockburst classes.  

 

 Distribution of rockburst intensity classes.  

Most of the observations were in the moderate class with 177 observations (37.2%). The weak class had 139 
observations (29.2%), the strong class had 92 observations (19.32%), and the none class had 68 observations 
(14.28%). Table 2 shows the statistical description for each feature of the dataset. As the range of values of the features 
used was diverse, the feature range was rescaled.   

Table 2 Statistical descriptions of the dataset.  

Descriptive 
Statistic 

Maximum 
Tangential 

Stress 

Uniaxial 
Compressive 

Strength 

Uniaxial 
Tensile 

Strength 

Stress 
Coefficient 

Rock 
Brittleness 
Coefficient 

Elastic 
Strain 
Index 

Mean 
Std. Deviation 

Minimum 
Maximum 

48.159 
24.181 
2.600 

114.440 

114.862 
43.014 
18.32 

235.000 

6.519 
3.320 
0.380 

17.200 

0.444 
0.215 
0.090 
1.100 

20.669 
8.929 
0.147 

47.930 

4.307 
2.096 
0.810 

10.900 
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Methodology 

First, we classify the occurrence of rockbursts using GWO–SVM and XGBoost. This information is important for safety 
measures, regardless of the explosion's size. Second, we employ the same models to classify rockburst intensities. This 
information helps us mitigate the severity of rockbursts. In other words, this research enables the early detection 
of rockburst size or intensity using the prediction results. Figure 2 depicts the flow of this research.  

This research starts with a literature review and data collection, followed by data preprocessing, including missing value 
handling through data cleaning, mean imputation, outlier checking using the interquartile range (IQR), and target class 
balancing in the training set using the synthetic minority oversampling technique (SMOTE). The two machine learning 
models are used to classify rockburst events before classifying their intensities. Finally, rockburst events in underground 
mines and their intensity classification were evaluated and compared in terms of accuracy, precision, recall, F1-score, 
and computation time using GWO–SVM and XGBoost models.  

 

 Research flow.  

Grey Wolf Optimization – Support Vector Machine 

In the GWO algorithm, the grey wolf population is divided into four classes based on the structure of its social hierarchy: 
alpha (𝛼), beta (𝛽), delta (𝛿), and omega (𝜔). The 𝛼 class is the leader, and its position is considered optimal for the 
algorithm. Meanwhile, 𝛽 and 𝛿 are determined as the second and third best solutions, respectively. The 𝜔 class is the 
candidate solution of all remaining wolves other than the previous three classes. During prey hunting, 𝛼 leads the 
search, whereas 𝛽 and 𝛿 assist in guiding 𝜔. 𝜔 updates its position according to the position of 𝛼, 𝛽, and 𝛿 (see Figs. 2–
4 in Mirjalili et al. (2014) for the illustration). 

In the GWO–SVM model, GWO plays a role in optimizing the parameters of the SVM: the 𝐶 parameter and the gamma 
parameter (𝛾) on the radial basis function (RBF) kernel. Here, 𝐶 controls the trade-off between maximizing the margin 
and minimizing the classification error, whereas 𝛾 defines the influence range of a single training example in the RBF 
kernel. The optimization begins by initializing the positions of the grey wolves (candidate solutions) and evaluating their 
fitness, which is measured using the classification error of the SVM. 

The process proceeds as follows: 

1. Initialization: Set the initial positions of all wolves (possible parameter combinations for 𝐶 and 𝛾). 
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2. Fitness evaluation: Assess each wolf’s performance based on SVM classification accuracy (lower error yields better 
fitness). 

3. Position update: Adjust the positions of ω wolves according to the guidance of 𝛼, 𝛽, and 𝛿 using GWO’s 
mathematical position-update rules. 

4. Termination: Stop when the maximum number of iterations is reached or convergence is achieved. 

The final output of GWO is the optimal pair of 𝐶 and 𝛾, which is then applied to the SVM for rockburst classification. 
The detailed computational process of SVM can be found in Mirjalili et al. (2014), and the overall workflow of GWO–
SVM is illustrated in Figure 3. 

 

 Flowchart of GWO-SVM. 

To start the GWO process, we first initialize the parameters (grey wolf population, number of dimensions (in our case, 
2, corresponding to 𝐶 and 𝛾), and number of iterations) and random positions for the search agent (𝜔 wolf) positions 
using Eq. (1): 

 𝑋⃗⃗ = (𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 −   𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑) ∙ 𝑟  + 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑      (1) 

where 𝑋⃗⃗  is the position vector of a search agent in the parameter space, the upper and lower bounds define the limit 

of the search space for each dimension, and 𝑟  is a vector with a random value in the interval (0, 1). 

At each iteration 𝑡, the fitness of each agent is evaluated using the classification error from SVM predictions (Eq. (2): 

 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  1 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦          (2) 

A lower error indicates better suitability of the parameter combination. In updating the search agents’ position, we use 
Eqs. (3) – (8). The distances between each wolf and the search agents are computed as follows: 

 𝐷⃗⃗ 𝛼 = |𝐶1 ∙ 𝑋⃗⃗ 𝛼 − 𝑋⃗⃗ |,   𝐷⃗⃗ 𝛽 = |𝐶2 ∙ 𝑋⃗⃗ 𝛽 − 𝑋⃗⃗ |, 𝐷⃗⃗ 𝛿 = |𝐶3 ∙ 𝑋⃗⃗ 𝛿 − 𝑋⃗⃗ |      (3) 

where 𝑋⃗⃗ 𝛼, 𝑋⃗⃗ 𝛽, and 𝑋⃗⃗ 𝛿 represent the positions of the 𝛼, 𝛽, and 𝛿 wolves, respectively. 𝐷⃗⃗ 𝛼, 𝐷⃗⃗ 𝛽, and 𝐷⃗⃗ 𝛿 are vectors 

representing the distances between the wolves and the search agents. 𝐶1, 𝐶2, and 𝐶3 are scalar coefficients controlling 
the step size of the search agents. 

The new potential positions for the search agents are then updated as follows: 

 𝑋⃗⃗ 1 = 𝑋⃗⃗ 𝛼 − 𝐴1 ∙ 𝐷⃗⃗ 𝛼,   𝑋⃗⃗ 2 = 𝑋⃗⃗ 𝛽 − 𝐴2 ∙ 𝐷⃗⃗ 𝛽,   𝑋⃗⃗ 3 = 𝑋⃗⃗ 𝛿 − 𝐴3 ∙ 𝐷⃗⃗ 𝛿      (4) 
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where 𝑋⃗⃗ 1, 𝑋⃗⃗ 2, and 𝑋⃗⃗ 3 represent new potential positions for the search agents, respectively, which are influenced by the 

positions of 𝛼, 𝛽, and 𝛿. 𝐴1, 𝐴2, and 𝐴3 are scalar coefficients controlling the exploration or exploitation process. To 

calculate each 𝐴i and 𝐶i, 𝑖 = 1,2,3  in Eqs. (3) – (4), we use Eqs. (5) – (7): 

 𝐴i = 2𝑎𝑟1 − 𝑎           (5) 

 𝐶i = 2𝑟2            (6) 

 𝑎 = 2 − 2 (
𝑡

𝑚𝑎𝑥 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
)          (7) 

where 𝑟1 and 𝑟2 are any random scalars in the interval (0, 1) and 𝑎 is a random scalar coefficient with decreasing values 

from 2 to 0 during the iteration of 𝑟1 and 𝑟2. Finally, we can update the position of the search agents in the (𝑡 + 1) 
iteration using Eq. (8): 

 𝑋 (𝑡 + 1) =
𝑋⃗ 1+𝑋⃗ 2+𝑋⃗ 3

3
          (8) 

These steps are repeated until the stopping criterion (maximum iterations or convergence) is reached, producing the 
optimal pair (𝐶, 𝛾) for SVM-based rockburst classification. At the end of the GWO process, we obtain the optimal values 

of parameter 𝐶 and 𝛾 as the final position of 𝛼 (𝑋⃗⃗ 𝛼), which serve as inputs of SVM. 

We use a dataset with 𝑛 = 476 samples and 𝑚 = 6 features (see Table 1). Because 𝑦 is a categorical variable 
(representing rockburst occurrence or intensity), it is encoded as a numerical value. For a given dataset, 𝒟 =
{(𝒙𝑖 , 𝑦𝑖)} (|𝒟| = 476, 𝒙𝑖 ∈ ℝ6, 𝑦𝑖 ∈ ℝ), we use the RBF as our SVM kernel function, as given in Eq. (9): 

 𝐾(𝒙𝑖 , 𝒙𝑗) = exp (−𝛾‖𝒙𝑖 − 𝒙𝑗‖
2
) , 𝛾 > 0         (9) 

where 𝒙𝑖 and 𝒙𝑗 are six-dimensional feature vectors representing the observed mining conditions, and 𝛾 is the kernel 

width parameter optimized by GWO to control the influence range of each support vector. The penalty parameter 𝐶 
(also optimized by GWO) is applied in the dual formulation of the SVM optimization problem (see Hertono et al. (2024) 
for more details). The final equation of SVM is given by Eq. (10): 

 𝑓(𝒙) = 𝑠𝑔𝑛(∑ [𝜆𝑖′𝑦𝑖
𝒏
𝒊=𝟏 𝐾(𝒙𝑖 , 𝒙𝑗)] + 𝑏′                     (10) 

where 𝜆𝑖′ and 𝑏′ are solutions that fulfill the Karush–Kuhn–Tucker conditions, 𝐾(𝒙𝑖 , 𝒙𝑗) is a kernel function, 𝑦
𝑖
 is the 

target, and 𝑛 is the number of support vectors. If the result of Eq. (10) is greater than 0, the data are classified as positive; 
otherwise, they are classified as negative. 

Extreme Gradient Boosting 

XGBoost is an ensemble learning algorithm developed from the GBDT algorithm. It is equipped with a regularization 
mechanism and column sampling method and adopts a parallel strategy in the DT splitting process, which greatly 
improves its speed and robustness (Zheng et al., 2023). Generally, it operates by creating an ensemble of DT, combining 
their predictions to make accurate classifications. Its process starts with the creation of a single DT, called a weak 
learner, which makes initial predictions. These predictions are then compared with the actual target values. The 
algorithm calculates the errors, highlighting where the model is making mistakes. In subsequent iterations, XGBoost 
builds additional trees, each focusing on reducing the errors made by previous ones. It assigns higher importance to 
misclassified data points, with the new trees designed to correct these errors. This iterative process continues until a 
predefined number of trees (or rounds) are built or until further tree additions do not significantly improve the model's 
performance. 

In multiclass classification, XGBoost makes predictions using Eq. (11). For each class 𝑗, the predicted probability 𝐹𝑖𝑗  for 

the 𝑖-th input sample is calculated as follows: 

 𝐹𝑖𝑗(𝒙𝑖) = 𝐹0(𝒙𝑖) + ∑ 𝑓𝑖𝑘(𝒙𝑖)
𝐾
𝑘=1                       (11) 
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where 𝐹0 is the initial prediction score (set to zero for classification problems), 𝐾 is the total number of DT, and 𝑓𝑖𝑘(𝒙)  
denotes the contribution of the 𝑘-th tree for the 𝑖-th observation and the input sample 𝒙. Thus, the final prediction is 
obtained by summing the outputs of all trees, which are sequentially added during the boosting process. 

The algorithm of the XGBoost model is as follows: 

1. Calculate the residual. The residual is the difference between the real value of the target variable and the initial 
predicted value, as given by Eq. (12): 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑖 = 𝑦𝑖 − 𝑃𝑖                        (12) 

where  𝑦𝑖  represents the original value of the 𝑖–th data target variable and 𝑃𝑖  represents the initial predicted probability 

of the positive class of 𝑖–th data for the first iteration. Generally, the initial predicted probability (𝑃0) of XGBoost is 
1

𝑚
, 

with 𝑚 being the number of classes. 

2. Select an arbitrary feature for the start node and branch its nodes with other features. 
3. Calculate the gain. The gain can be calculated from the difference between the objective function (we use log loss 

in this research) values before and after the split, as shown in Eq. (13): 

𝑔𝑎𝑖𝑛 = 𝑙𝑒𝑓𝑡𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 + 𝑟𝑖𝑔ℎ𝑡𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 − 𝑟𝑜𝑜𝑡𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 − 𝛾                   (13) 

where 𝛾 is a regularization parameter with default value of 0, left or right similarity refers to the similarity score of the 
child node of a tree split, and root similarity refers to the similarity score of a root node. The similarity score in the Eq. 
(13) for the classification problems can be calculated using Eq. (14): 

𝑆𝑗,𝑘 =
(∑ 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑖,𝑗,𝑘 𝑁

𝑖=1 )
2

∑ [𝑃𝑖,𝑗,𝑘∗(1−𝑃𝑖,𝑗,𝑘)]𝑁
𝑖=1 +𝜆

                            (14) 

where 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑖,𝑗,𝑘 is the residual of the 𝑖– th sample assigned to the split, 𝑃𝑖,𝑗,𝑘  is its predicted probability, 𝜆 is the L2 

regularization term to avoid overfitting with the default value zero, 𝑁 is the total number of observations, and 𝑆𝑗,𝑘 is 

the similarity score of the leaf node-𝑗 and tree-𝑘.  

4. Pre-pruning (removing branches from a DT during tree-building to see if they provide little or no additional benefit). 
If the gain from a potential split is less than zero, the split is not performed. Instead, steps 2 and 3 are repeated, 
where the feature with the maximum gain is  selected as the node split. These steps are repeated until no further 
branches can be formed for the tree. 

5. Post-pruning (removing branches from a fully grown DT to see if they provide little or no additional benefit). If the 
gain is less than zero, the branch is pruned. Otherwise, the process proceeds to the next step. 

6. Calculate the prediction output value for each leaf of tree-k using Eq. (15): 

𝒘𝒋,𝒌 =
∑ 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑖,𝑗,𝑘 𝑁

𝑖=1

∑ [𝑃𝑖,𝑗,𝑘∗(1−𝑃𝑖,𝑗,𝑘)]𝑁
𝑖=1 +𝜆

                                    (15) 

Here, 𝑤𝑗,𝑘 represents the weight of leaf 𝑗 in tree 𝑘, corresponding to the contribution of this leaf to the final prediction. 

7. Perform steps 2 to 6 until the stopping criteria are met.  
8. The prediction of tree-k can be calculated using Eq. (16): 

𝑓𝑘(𝒙) = 𝜂 ∙ ∑ 𝒘𝑗,𝑘 ∙ 𝑰(𝒙 ∈ 𝑹𝑗,𝑘)
𝐽𝑘
𝑗=1                                    (16) 

where 𝑓𝑘(𝒙) is the prediction of the 𝑘-th tree, 𝜂 is the learning rate controlling the step size at each iteration, 𝐽𝑘 is the 

total number of leaves in the tree-𝑘, and 𝑰(𝒙 ∈ 𝑹𝑗,𝑘) is an indicator function that equals 1 if sample 𝒙 falls into leaf 𝑗 of 

tree-𝑘, and 0 otherwise. 

9. Update the prediction of XGBoost for each iteration using Eq. (11). 
10. If the stopping criteria are not yet reached, update the residual for the next tree/iteration using Eq. (17): 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑖
𝑡 = 𝑦𝑖 − 𝐹𝑡−1(𝒙𝑖)                                    (17) 

where 𝐹𝑡−1 represents the prediction of XGBoost at iteration 𝑡 − 1.  

11. Repeat steps 2–10 until the stopping criteria are met. The final prediction of XGBoost is represented by the final 
result of Eq. (11). 
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Results 

Computing Environment and Preprocessing 

In this research, we used Python 3.9 as the programming language, executed through Google Colab. The device used 
was equipped with an Intel Core i3 Gen 11 processor (3 GHz, 4 CPUs) and 16 GB of RAM.  

Before the implementation of these models, we implemented preprocessing steps on the dataset. There were some 
missing values in the initial dataset: 26 in MTS, UCS, and UTS and 2 in SC, RBC, ESI, and Intensity (see Table 1). We 
considered three imputation methods (mean, median, and mode) to handle the missing values. After the test, 
imputation using the mean gave the best result. Thus, we used mean imputation to handle the missing values in the 
initial dataset. 

There were some outliers in the dataset, according to IQR checking. By testing two conditions (removing and retaining 
outliers), the model performed better after removing the outliers.  As the feature range in our dataset varied, we 
decided to normalize them through min-max normalization. We compared the model’s performance before and after 
normalization, with normalization yielding better results. Finally, to avoid model bias to a specific class, we performed 
SMOTE only on the training set. Obviously, this increased the number of data samples as we increased the number of 
minority classes. We also compared the model’s performance before and after the SMOTE process. The results 
improved when we resampled the classes.  

The rockbursts events and intensities were then classified using data that had passed all preprocessing stages (handling 
missing values and outliers, feature normalization, and data resampling). As GWO–SVM could produce optimal 
parameters, only the hyperparameters in XGBoost were tuned using GridSearchCV to obtain optimal parameters (see 
Table 3 for the range used).  

Table 3 Hyperparameter range. 

GWO-SVM XGBoost 

The search range of the number of iterations is 10–50 
iterations, in increments of 10. 

The search range of the total population size of grey 
wolves is 10–50 wolves, in increments of 10. 

The number of dimensions is 2, as it relates to the 
optimization of the parameters C and gamma for SVM. 
The search range of the gamma value is the position of 

the grey wolf on the x-axis, which is searched within the 
range from 1–10 or 5–25. 

• The search range of the C value is the position of the 
grey wolf on the y-axis, which is searched within the 

range from 1–10 or 10–50. 

The search range of the learning rate (eta) is 0.01–1. This 
range is chosen so that the new trees added do not have 

too much or too little influence. 
The search range of gamma is 0.01–1. This range is 

chosen so that the minimum loss reduction from tree 
branching is neither too large nor too small. 

The search range of lambda is 0.01–1. This range is 
chosen so that the L2 regularization on each leaf weight 

is neither too large nor too small. 
The search range of the number of trees is 100–1000. 

The search range of the maximum depth of the trees is 
6–10. 

In this research, with the search ranges given in Table 3, we used the optimal value for each parameter in both models. 
For GWO–SVM parameters in event classification, we used 10 iterations, a grey wolf population size of 10, a gamma 
value of 8.5018, and a 𝑪 value of 34.113. In intensity classification, we used 10 iterations, a grey wolf population size of 
40, a gamma value of 17.4008, and a 𝑪 value of 12.0328. For XGBoost parameters in event classification, we used 0.5 
for the learning rate and gamma, 0.1 for lambda, 100 trees, and 10 for the maximum tree depth. In intensity 
classification, we used 0.1 for the learning rate and gamma, 0.5 for lambda, 1000 trees, and 8 for the maximum tree 
depth. 

Figure 4 reveals the relationship between the six input features and the target variables (rockburst intensity and event 
occurrence). In this figure, darker colors represent stronger correlations (either positive or negative), whereas lighter 
shades indicate weaker relationships. Among all features, MTS, ESI, and SC exhibit the darkest shades with respect to 
the targets, confirming their dominant influence on rockburst classification. This observation aligns with the established 
rock mechanics theory, where stress concentration and brittleness are key triggers of rockburst events. In contrast, UCS 
and RBC appear lighter in the heatmap, indicating their relatively weaker contributions. Overall, the heatmap visually 
reinforces that MTS, ESI, and SC are the most critical predictors in modeling rockburst behavior 
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 Heatmap correlation matrix. 

GWO–SVM Performance for Rockburst Classification 

The implementation of GWO–SVM was evaluated using various proportions of train–test split data: 50:50, 60:40, 70:30, 
80:20, and 90:10. Each proportion was evaluated using various evaluation metrics and running time (average of five 
repetitions) for each proportion in the testing data. The rockburst events classification performance of GWO–SVM on 
the test set is shown in Table 4. Test set performance for rockburst event classification (GWO–SVM). 

Table 4 Test set performance for rockburst event classification (GWO–SVM). 

Train–Test Split 
Evaluation Metrics 

Accuracy (%) Precision (%) Recall (%) F1-Score (%) Running Time (s) 

50:50 
60:40 
70:30 
80:20 
90:10 

92.611 
93.210 
95.082 
97.531 

100 

87.339 
86.008 
91.372 
94.444 

100 

86.488 
89.445 
91.372 
98.462 

100 

86.905 
87.593 
91.372 
96.278 

100 

3.468 
3.598 
3.602 
4.218 
4.952 

Note. Metrics reported: accuracy, precision, recall, F1-score, and runtime (s). Numbers in bold are the best values per column. The results are averaged 
over five runs. SMOTE was applied to the training split only. 

Subsequent analyses used the 80:20 train–test split. The 90:10 split yielded a lower test performance alongside higher 
training scores, indicating overfitting. At 80:20, the event classification shows had comparable training and test metrics, 
suggesting no overfitting under this setting. Performance improved as the training fraction increased from 50:50 to 
80:20. The GWO–SVM test set results for intensity classification are reported in Table 5. 

Table 5 Test set performance for rockburst intensity classification (GWO-SVM). 

Train–Test Split 
Evaluation Metrics 

Accuracy (%) Precision (%) Recall (%) F1-Score (%) Running Time (s) 

50:50 
60:40 
70:30 
80:20 
90:10 

70.000 
70.588 
72.549 
80.882 
85.294 

67.787 
67.301 
67.828 
78.862 
85.880 

68.965 
74.131 
72.652 
80.141 
89.286 

68.325 
69.064 
68.681 
79.322 
84.138 

3.252 
3.750 
4.682 
5.638 
5.484 

Note. Metrics reported: accuracy, precision, recall, F1-score, and runtime (s). Numbers in bold are the best values per column. The results are averaged 
over five runs. SMOTE was applied to the training split only. 
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Subsequent intensity analyses used the 90:10 train–test split. At 90:10, the training and test metrics were comparable, 
indicating no overfitting under this setting. Across splits, performance increased as the training fraction rose from 50:50 
to 90:10. Comparing the best results in Table 4 (event) and Table 5 (intensity), the intensity metrics were lower than the 
event metrics.  

XGBoost Performance for Rockburst Classification 

The same procedures as in GWO–SVM were applied in the implementation of XGBoost. The rockburst event 
classification performance of XGBoost on the test set is shown in Table 6. In Table 6, the best event classification 
performance for XGBoost occured at the 80:20 train–test split. This was consistent with GWO–SVM, whose best event 
result also appeared at 80:20. Accordingly, we used the 80:20 split for subsequent event analyses. Performance 
increased monotonically from 50:50 to 80:20 and decreased at 90:10. At 80:20, XGBoost’s inference time was 0.545s 
versus 4.218s for GWO–SVM (approximately eight times faster). 

Table 6 Test set performance for rockburst event classification (XGBoost) 

Train–Test Split 
Evaluation Metrics 

Accuracy (%) Precision (%) Recall (%) F1-Score (%) Running Time (s) 

50:50 
60:40 
70:30 
80:20 
90:10 

91.133 
91.358 
91.803 
97.531 
92.683 

83.321 
82.344 
84.454 
94.444 
91.319 

88.988 
88.350 
89.392 
98.462 
88.387 

85.718 
84.888 
86.605 
96.278 
89.724 

0.856 
0.656 
0.523 
0.545 
0.747 

Note. Metrics reported: accuracy, precision, recall, F1-score, and runtime (s). Numbers in bold are the best values per column. The results are averaged 
over five runs. SMOTE was applied to the training split only. 

The intensity classification results for XGBoost on the test set are reported in Table 7. 

Table 7 Test set performance for rockburst intensity classification (XGBoost). 

Train–Test Split 
Evaluation Metrics 

Accuracy (%) Precision (%) Recall (%) F1-Score (%) Running Time (s) 

50:50 62.353 59.336 62.754 60.287 1.703 
60:40 64.706 61.274 67.081 62.533 0.106 
70:30 68.628 63.736 67.588 64.430 0.656 
80:20 76.471 73.362 79.438 73.535 0.291 
90:10 88.235 84.127 91.369 86.508 1.910 

Note. Metrics reported: accuracy, precision, recall, F1-score, and runtime (s). Numbers in bold are the best values per column. The results are averaged 
over five runs. SMOTE was applied to the training split only. 

According to evaluation metrics, the 90:10 train–test split yielded the best performance for rockburst intensity using 
XGBoost, consistent with GWO–SVM. Accordingly, subsequent intensity analyses used the 90:10 split. Across splits, 
performance improved as the training fraction increased from 50:50 to 90:10. In terms of runtime, XGBoost executed 
longer on the intensity task than on the event (binary) task. 

Discussion 

A comparative analysis between GWO–SVM and XGBoost was conducted by evaluating the best-performing results 
across both models. The comparison first considered the confusion matrices of rockburst event classification with an 
80:20 train–test split and rockburst intensity classification with a 90:10 train–test split. For rockburst event classification, 
the test set consisted of 81 observations (20%), whereas the test set for the rockburst intensity classification comprised 
34 observations (10%). The detailed results of these confusion matrices are presented in Tables 8 and 9, respectively. 

The confusion matrices presented in Table 8 demonstrate that both GWO–SVM and XGBoost achieved identical 
outcomes for rockburst event classification. All 16 “Existent” events were correctly classified, whereas only two 
instances of “None” were misclassified as “Existent”. This indicated the absence of false negatives a critical requirement 
in rockburst prediction tasks, as missing an actual event may lead to catastrophic consequences. Although the 
occurrence of a few false positives could result in unnecessary alarms, such outcomes are generally more tolerable in 
the mining safety domain compared with the risks posed by false negatives. 



Classifying Rockburst Events and Intensity in Underground Mines using Grey Wolf Optimization    827 
DOI: 10.5614/j.eng.technol.sci.2025.57.6.6 
 

 

Table 8 Confusion matrices for rockburst event classification using GWO–SVM and XGBoost on test sets. 

GWO–SVM  XGBoost 

Actual 
Predicted 

Actual 
Predicted 

Existent None Existent None 

Existent 16 0 Existent 16 0 

None 2 63 None 2 63 

Table 9 highlights the classification results for rockburst intensity, where both models demonstrated strong predictive 
capacity. However, in contrast to event classification, intensity prediction was more challenging. XGBoost showed a 
slightly better consistency across multiple intensity levels compared with GWO–SVM, reducing misclassifications among 
adjacent classes. This aligns with prior studies (Xue et al., 2020; Wang et al., 2022; Wojtecki et al., 2021) that emphasized 
that ensemble-based models often perform more robustly in multiclass problems given their ability to capture complex 
feature interactions. Nonetheless, some overlap among classes persisted, indicating that further feature engineering or 
hybrid modeling may be required for improved performance in rockburst intensity prediction. 

Table 9 Confusion matrices for rockburst-intensity classification using GWO–SVM and XGBoost on test sets. 

GWO–SVM  XGBoost 

Actual 
Predicted 

Actual 
Predicted 

Weak Moderate Strong Weak Moderate Strong 

Weak 13 1 0 Weak 13 1 0 

Moderate 2 12 2 Moderate 1 13 2 

Strong 0 0 4 Strong 0 0 4 

Table 10 compares the evaluation metrics in rockburst event classification between GWO–SVM and XGBoost models 
using 80% of the training data. 

Table 10 Comparison of the rockburst event classification performances of GWO–SVM and XGBoost on test sets with 80% 
training data. 

Model 
Evaluation Metrics 

Accuracy (%) Precision (%) Recall (%) F1-Score (%) Running Time (s) 

GWO–SVM 
XGBoost 

97.531 
97.531 

94.444 
94.444 

98.462 
98.462 

96.278 
96.278 

4.218 
0.545 

The results in Table 10 confirm that both models achieved equivalent predictive performance, with high accuracy 
(97.53%), precision (94.44%), recall (98.46%), and F1-score (96.28%). However, the key distinction lies in computational 
efficiency. GWO–SVM required 4.218s to complete the task, whereas XGBoost completed it in only 0.545s. This 
discrepancy could be attributed to the algorithmic complexity of each method. GWO–SVM integrates the grey wolf 
optimizer, which iteratively searches for optimal SVM hyperparameters through repeated kernel evaluations, leading 
to higher computational cost. In contrast, XGBoost leverages an efficient histogram-based GB framework and 
parallelized tree construction, both of which scale more linearly with dataset size. These algorithmic differences explain 
why XGBoost is substantially faster, highlighting its practical advantage for real-time monitoring applications where 
rapid response is critical.  

Table 11 summarizes the comparison of evaluation metrics in rockburst intensity classification by both GWO–SVM and 
XGBoost models using 90% of the training data. 

Table 11 Comparison of the rockburst intensity classification performances of GWO–SVM and XGBoost on test sets with 90% 
training data. 

Model 
Evaluation Metrics 

Accuracy (%) Precision (%) Recall (%) F1-Score (%) Running Time (s) 

GWO-SVM 
XGBoost 

85.294 
88.235 

85.880 
84.127 

89.286 
91.369 

84.138 
86.508 

5.484 
1.910 

The comparative results in Table 11 emphasize the greater challenge of rockburst intensity classification. Although 
GWO–SVM and XGBoost both achieved high predictive metrics, XGBoost outperformed GWO–SVM in terms of recall 
(91.37% vs. 89.29%) and F1-score (86.51% vs. 84.14%). The running time further illustrated the computational gap: 
GWO–SVM took 5.484s, whereas XGBoost completed the task in only 1.910s. The slower performance of GWO–SVM 



828               Adhitya Dwi Nugraha et al. 

 

   

 

stemmed from its reliance on metaheuristic optimization and computationally expensive SVM kernel evaluations, both 
of which scale poorly as the complexity of the classification task increased. In contrast, XGBoost benefited from 
optimized GB with parallel computation and efficient memory usage, enabling it to handle imbalanced multiclass data 
more effectively with reduced latency. These results suggest although both models are accurate, XGBoost offers 
superior feasibility for operational decision-making in mining environments, where rapid detection and response are 
essential for safety. Table 12 shows the performances of both models in predicting each class of rockburst events class 
rockburst events. 

Table 12 Class prediction in rockburst event classification by both models. 

Class 
GWO–SVM XGBoost 

Precision Recall F1-Score Precision Recall F1-Score 

None 0.89 1.00 0.94 0.89 1.00 0.94 
Exist 1.00 0.97 0.98 1.00 0.97 0.98 

The results in Table 12 highlight the class-level performance of both models for rockburst events. The Existent class 
achieved perfect precision (1.00) in both models, indicating that all events predicted as Existent were indeed true 
positives. However, the recall for this class was slightly lower (0.97), reflecting a small number of false negatives. In 
contrast, the None class demonstrated perfect recall (1.00) but lower precision (0.89), showing that some negative cases 
were misclassified as events. This trade-off indicates that both models prioritize minimizing false negatives for the None 
class, which is crucial for safety in rockburst monitoring applications. Missing a true rockburst event can have severe 
consequences, whereas occasionally false alarms are generally more acceptable in operational settings. Overall, the F1-
score values (0.98 for Existent and 0.94 for None) confirm that the models maintain a balanced and reliable classification 
across both classes, with slightly stronger emphasis on detecting actual rockburst occurrences. Table 13 shows the 
performances of both models in predicting each class in rockburst intensity classification.  

Table 13 Class prediction in rockburst intensity classification by both models. 

Class 
GWO–SVM XGBoost 

Precision Recall F1-Score Precision Recall F1-Score 

Weak 0.87 0.93 0.90 0.93 0.93 0.93 
Moderate 0.92 0.75 0.83 0.93 0.81 0.87 

Strong 0.67 1.00 0.80 0.67 1.00 0.80 

Overall, both models had a better evaluation of the “Weak” class than the “Moderate” and “Strong” classes. Although 
the “Strong” class had erfect recall for both models, its precision was low. In the context of rockbursts, precision refers 
to the proportion of correctly identified rockburst events (true positives) out of all instances predicted as rockbursts. 
We suspect that this low precision value was due to an imbalance in the testing data, thus limiting the model’s ability 
to learn from the data in determining the proportion of correctly identified rockburst events (true positive) out of all 
instances predicted as strong rockbursts. This was evidenced by the low precision value (0.67) on the Strong class in 
both models. 

Recall measured the models’ ability to detect all actual rockburst events, indicating the proportion of true rockbursts 
that were correctly classified. Data imbalance in testing data might have limited the models’ ability to detect all actual 
rockbursts in the Moderate class. This was shown by the low recall value in the Moderate class (0.75 and 0.81 for GWO–
SVM and XGBoost, respectively). The F1-score balanced precision and recall, providing an overall measure of the models’ 
effectiveness in correctly identifying rockbursts without overlooking too many or making too many false predictions. 
From the results, XGBoost achieved a precision, recall, and F1-score of 0.93 in predicting the Weak class. A precision of 
0.93 means that 93% of the cases that the model classified as rockbursts were in fact rockbursts. The model rarely made 
false positive predictions, indicating its ability to avoid misclassifying nonrockburst events as rockbursts. A recall of 0.93 
means that the model correctly identified 93% of the actual rockbursts. The model effectively captured almost all true 
rockburst events, with a low rate of false negatives (i.e., missing true rockbursts). Lastly, a score of 0.93 for the F1-score 
means that the model maintained a good balance between precision and recall. The model was good at both identifying 
rockburst events and avoiding incorrect classifications, resulting in a strong overall classification performance. Because 
both models are better at predicting the “Weak” class, it becomes our limitation when building a model that can predict 
the “Strong” class better than the rest of the classes.  
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When compared with previous research (Li et al., 2023) that used GWO–SVM, with more observations, this research 
proves that classifying rockburst events and intensity can work very well with GWO–SVM. The results show a positive 
effect in handling imbalanced data on classification performance. By balancing the target classes in the training set, the 
model is more predictive and therefore performs classification better. With a much larger number of observations, this 
research also validates the results of He et al. (2023) who had excellent performance results on rockburst intensity 
classification problems using XGBoost. By integrating oversampling strategies with larger datasets, the present study 
provides stronger evidence that both GWO-SVM and XGBoost are viable for rockburst prediction, while highlighting the 
need for further methodological improvements, such as hybrid resampling, cost-sensitive learning, or feature 
engineering to enhance discrimination, particularly for the Strong class. Table 14 compares the results of this research 
with those of research that used other optimizers. 

Table 14 Comparison of rockburst intensity classification performances. 

Model Test sets correct rate (%) Reference 

GWO–SVM 
 

XGBoost 
 

PSO–SVM 
 

GA–SVM 

85.29 
(29/34) 
88.24 

(30/34) 
77.78 
(7/9) 
77.78 
(7/9) 

This paper 
 

This paper 
 

(Zhou et al., 2012) 
 

(Zhou et al., 2012) 

As shown in Table 14, GWO–SVM and XGBoost achieved superior test set performance compared with previous 
optimization-based SVM approaches, such as particle swarm optimization–SVM (PSO–-SVM) and genetic algortihm–
SVM (GA–SVM), which reported 77.78% accuracy with a smaller test set of nine instances. With the higher number of 
observations (34) in the test set, this study achieved higher accuracies of 85.29% and 88.24% for GWO–SVM and 
XGBoost, respectively. The values (29/34) and (30/34) show the number of correct predictions over the total number of 
observations in the test set.  

Given its high accuracy and low latency, XGBoost is well-suited for early warning and mitigation of rockbursts, helping 
reduce operational risks and potential losses. To strengthen field deployment, future work should refine Strong-class 
precision via cost-aware thresholding and hybrid resampling, incorporate physics-informed features, and perform 
validation across multiple sites with uncertainty and explainability reporting. 

Conclusion 

This study addressed the prediction of rockburst occurrences (events) and rockburst intensities in underground mines 
using GWO–SVM and XGBoost. With standardized preprocessing and split evaluations, both models performed strongly 
for event classification at the 80:20 split, each achieving 97.53% accuracy, 0.9444 precision, 0.9846 recall, and 0.9628 
F1-score. For intensity classification at 90:10, XGBoost outperformed GWO–SVM in terms of accuracy, recall, F1-score, 
and runtime (accuracy, 88.24%; precision, 0.8413; recall, 0.9137; F1-score, 0.8651). Class-wise analysis indicated that 
predictions were most reliable for the Weak class. Meanwhile, the Moderate class showed lower recall and the Strong 
class suffered from lower precision—patterns consistent with residual class imbalance and feature overlap. Overall, 
these results confirm the promise of combining optimization-based SVM and ensemble learning for rockburst 
prediction, with XGBoost particularly suitable for early warning scenarios given its lower latency. Future work should 
prioritize hybrid resampling and cost-sensitive/threshold tuning to improve Strong-class precision, explore physics-
informed and spatiotemporal features, and conduct multisite external validation with uncertainty and explainability 
reporting to strengthen robustness and field deployment. 
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