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Abstract 

An innovative nonlinear enhancement technique that integrates the cloud model with Fuzzy Analytic Hierarchy Process (FAHP) is 
presented in this study. For the first time, this paper introduces TBM tunnelling parameters as evaluation indicators for tunnel 
construction collapse risk. Precise risk level thresholds are set for each indicator, establishing a comprehensive TBM construction 
collapse risk assessment system. Within this system, the cloud model is applied to accurately depict membership degrees, 
transcending the limitations of traditional reliance on functional formulas. Furthermore, the AHP is utilized to precisely calculate the 
weight vectors of the assessment indicators. Most significantly, this study introduces a nonlinear operator to achieve an efficient 
integration of the weight vectors with the fuzzy relation matrix. Based on the principle of maximum membership degree, the ultimate 
collapse risk level for TBM construction is determined. This method overcomes the shortcomings of traditional FAHP, which neglects 
the randomness in calculating membership degrees and the potential dilution of the influence of key risk factors when using linear 
operators in comprehensive risk assessment. The model was applied and validated in a hydraulic tunnel construction project, 
demonstrating its innovation and reliability, thus providing new theoretical foundations and technical support for the field of tunnel 
construction risk assessment. 

Keywords: cloud model; hydraulic tunnel; nonlinear operator; risk assessment model; TBM construction; tunnel collapse. 

 

Introduction 

Tunnel boring machine construction often encounters fault fracture zones and other adverse geological phenomena, 
which can very easily cause tunnel construction collapse accidents [1-3]. In the absence of early warning, the impact of 
the collapse disaster in TBM construction will be far greater than with the traditional drilling and blasting method. 
Therefore, it is important to carry out prediction of collapse risk during TBM tunnel construction to ensure that the TBM 
can be successfully and safely drilled in the tunnel. 

TBM construction collapse risk evaluation involves various uncertainties, such as evaluation indicators that are not easy 
to quantify, data measurement errors, the influence of expert subjectivity, and other characteristics, all of which lead 
to unavoidable ambiguity and randomness in the evaluation of TBM construction collapse risk. From this it can be seen 
that the risk assessment of existing tunnels is essentially an uncertainty problem with both randomness and ambiguity 
[4-7]. Currently, most methods for dealing with uncertainty issues are based on probability theory and fuzzy 
mathematics. In terms of probability theory, the total probability formula, probabilistic decision-making, and reliability 
estimation have been used to study risks at arbitrary locations in tunnels, subway construction safety, tunnel excavation, 
and slope engineering. Probability theory is more suitable for engineering problems where a large amount of 
quantitative data can be obtained. However, when predicting the risk of TBM tunnel construction collapse, only a small 
amount of quantitative data can be obtained. FAHP is a systematic analysis method that helps to solve assessment 
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problem where decision information is characterized by uncertainty. Many researchers have applied FAHP to their risk 
assessments of underground engineering and got good results [8-10]. From previous studies, we can find that FAHP is 
an effective tool for addressing uncertainties in underground engineering risk assessment. This method can express the 
fuzziness of the evaluation system with its membership function to a certain extent. However, it does not take into 
account the randomness possessed by the membership function itself, which makes the evaluation system lose its 
randomness. TBM construction collapse risk evaluation is both fuzzy and random. Either one being ignored may cause 
the judgment result to deviate from the real situation. Two main problems can be summarized related to the application 
of FAHP in risk evaluation of tunnel construction: 1) the membership degree of an indicator is mostly calculated by the 
empirical formula of the membership function, which makes it difficult to express the randomness between the risk 
evaluation indexes and the risk level; 2) in the comprehensive evaluation of the membership degree and weight, FAHP 
mostly uses the linear average weighting calculation method, which weakens the influence of the indicator with a larger 
weight on the evaluation results. Both of these problems will lead to the evaluation results not being consistent with 
the engineering reality. 

The cloud model is introduced to the risk assessment considering both fuzziness and randomness. The cloud model, 
proposed by Li [11], is a research method that can take into account both the randomness and fuzziness of uncertainty 
problems, which provides a new research idea for solving uncertain problems such as engineering risk assessment. After 
more than twenty years of exploration, the cloud model has been applied in many fields, such as data mining and risk 
assessment, and has achieved many outstanding results [12-14]. 

In view of the abovementioned problems, considering that the risk pregnancy environment of collapse accidents in TBM 
construction is different from that of drilling and blasting construction, the influence of TBM drilling parameters on 
collapse is taken into account in the evaluation system. Five parameters, i.e., rock hardness and underground water 
related to engineering geological conditions and two key TBM drilling parameters, i.e., thrust and penetration, were 
selected as the evaluation indicators. An evaluation index system of TBM construction collapse risk was established. The 
three numerical characteristics of the cloud model are used to represent the membership degree of the different risk 
levels corresponding to each evaluation indicator. A nonlinear operator is introduced into the comprehensive 
calculation of the weight vector and membership degree matrix to determine the final collapse risk level. A new model 
based on cloud modeling-nonlinear FAHP method for TBM construction collapse risk evaluation is constructed, which 
can be applied to the TBM construction collapse risk evaluation of a hydraulic transmission system. 

Risk Evaluation Index System of the TBM Construction Collapse 

Determine the Risk Evaluation Indicators 

When encountering adverse geological conditions such as fault fracture zones, the scope of the loosening circle of the 
surrounding rock expands after encountering underground water, which is easy to cause tunnel collapse accidents. In 
addition, the continuous vibration of the TBM will also aggravate the damage to the surrounding rock. Therefore, the 
risk evaluation of collapse in TBM construction should not only consider geological factors such as joint characteristics 
and underground water but also the parameters of TBM drilling. Considering these two aspects of the risk pregnancy 
environment of collapse accidents in TBM construction, the risk factors affecting TBM tunnel construction collapse are 
categorized into engineering geological conditions and TBM drilling parameters. 

Engineering Geological Conditions (X1) 

Engineering geological conditions are the factors that have the greatest impact on tunnel collapse. Among them, the 
basic quality of the rock and the underground water condition are the most important parameters reflecting the 
engineering geological conditions. By summarizing and analyzing the relevant references and combining the principles 
of representativeness [15-19], feasibility and easy quantification of indicators, hardness of rock mass (X11), degree of 
rock integrity (X12), degree of joints development (X13), angle between direction of the structural plane and the tunnel 
axis (X14), and underground water (X15) were selected as the evaluation indicators of the engineering geological 
conditions. 

TBM Drilling Parameters (X2) 

In the process of tunneling, the TBM cutter plate has an obvious extrusion effect on the palm face of the surrounding 
rock, causing deformation of the surrounding rock, and the cutting effect and vibration of the cutter plate also affect 
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the stability of the surrounding rock. Furthermore, the cutting action and vibration of the cutter will also affect the 
stability of the surrounding rock. The TBM tunneling parameters of cutterhead thrust (X21) and length of penetration 
(X22) can optimally reflect the state of the TBM tunneling [20, 21]. In this paper, X21 and X22 were selected as the 
indicators for collapse risk evaluation of TBM tunnel construction. 

Based on the analysis results of 1.1.1 and 1.1.2, a three-layer collapse risk evaluation indicator system for TBM tunnel 
construction was established, as shown in Figure 1. 

 

 Risk evaluation index system for collapse in TBM tunnel construction. 

Division of Risk Level of Evaluation Indicators 

According to relevant standards [22], the risk level of TBM tunnel construction collapse is divided into five levels, and 

the corresponding risk status is risk-free (Ⅰ), low risk (Ⅱ), medium risk (Ⅲ), high risk (Ⅳ), and extremely high risk (Ⅴ), 

respectively. The risk level thresholds corresponding to the seven evaluation indicators were divided according to the 
relevant research results. The results of the division are shown in Table 1. 

Table 1   Risk level classification of the evaluation indicators. 

Influencing 
factor 

Risk level 

Engineering geologic conditions X1 TBM drilling parameter X2 

X11 X12 X13 X14 X15 X21 X22 

Ⅰ 
Extremely 

hard 
Complete Not development 0~10° Anhydrous >18,000 kN <5mm/min 

Ⅱ Hard More complete Minor development 10~30° Seepage 13,000~18,500 kN 5~9mm/min 

Ⅲ Medium Broken 
Comparative 
development 

30~50° Drip 8,000~13,500 kN 9~15mm/min 

Ⅳ Soft Tattered Developmental 50~70° 
Filamentous 

flow 
4,000~8,500 kN 10~25mm/min 

Ⅴ Very soft 
Extremely 

broken 
Extremely 

development 
70~80° Water burst <4,500 kN >50mm/min 

Prediction of Collapse Scale 

Incorporating the qualitative classification of engineering rock mass stability from reference [15] and the criteria for 
tunnel collapse scale and rock mass classification from reference [23], this study synthesized the data feedback from 
the construction site personnel of the case study. After summarizing, organizing, and adjusting the information, the 
predicted scale of collapse range in TBM tunnel construction and the corresponding risk levels are presented in Table 2. 
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Table 2   The scale of collapse corresponding to different risk levels. 

Risk 
level 

Collapse Scale Corresponding consequences and treatment measures 

Ⅰ No collapse phenomenon No impact on construction 

Ⅱ Collapse height <1 m, or collapse volume <10 m3 Minor engineering losses 

Ⅲ Collapse height 1-3 m, or collapse volume 10-30 m3 Impact on construction 

Ⅳ Collapse height 3-6 m, or collapse volume 30-60 m3 Grave consequence 

Ⅴ Collapse height ＞6 m, or collapse volume ＞60 m3 
Catastrophic consequences, immediate shutdown and 

reorganization 

TBM Construction Collapse Risk Evaluation Model 

In this paper, the FAHP method was improved by cloud model and nonlinear operator, respectively. Based on the 
constructed risk evaluation indicator, a new model for risk evaluation of tunnel collapse in TBM construction by 
improved FAHP method with cloud model and nonlinear operator was established. The specific model building process 
was as follows. 

Establishment of the Factors Sets and the Evaluation Set 

Based on the three-tier risk evaluation index system established in the first section, the factor sets were constructed as 
U1 = {X11, X12, X13, X14, X15} and U2 = {X21, X22} respectively. U1 is the set of risk factors, while U2 is the set of risk evaluation 
indicators. 

The evaluation set of this study is a set of five risk levels, S = {I Ⅱ Ⅲ Ⅳ V}. 

Membership Degree Calculation 

The risk level judgment of the i-th factor in U yields a single-factor judgment vector Ri, which indicates the membership 
degree of the i-th risk factor to different risk levels in S. The Ri of the same factor set is called the single-factor judgment 
matrix 𝑹 = [𝑅1 𝑅2 ⋯ 𝑅𝑖], where R represents a kind of fuzzy relationship between the evaluation index and the 
risk of collapse level. 

Cloud Model Overview 

The cloud model is an algorithmic model that can convert qualitative concepts into quantitative values, as proposed by 
Li [11]. Based on probability theory and fuzzy set theory, the cloud model expresses the mapping relationship between 
the evaluation language and quantitative values in a one-to-many manner by calculating the three numerical 
characteristics (Ex En He), i.e., expectation, entropy, and hyperentropy. The accuracy of the evaluation results can be 
increased by taking into account the randomness and fuzziness of the evaluation of tunnel collapse risk. 

Suppose that U is a quantitative domain expressed in exact numerical terms and T is a qualitative concept of the space 
of U. If the membership degree 𝜇𝑇 (x)∈[0,1] of an element x(x∈X) of T is a random number with a stabilizing tendency, 
as shown in Equation (1), then the distribution of the mapping of concept T from domain U to interval [0,1] in the space 
of number fields is called a cloud. 

𝜇𝑇 (x):U→［0,1］,∀ x∈X(X⊆U), x →𝜇𝑇 (x)                                                                           (1) 

(x,𝜇𝑇 (x)) represents the cloud drop, where each cloud drop is a quantitative realization of the qualitative concept. The 
minimum unit of the cloud model is the basic cloud model, and the normal cloud model is one of the commonly used 
basic cloud models with universal applicability. In this study, the cloud model was based on the cloud model to calculate 
the membership degree. The cloud expectation equation, in the form of normal distribution, can be expressed as 
follows: 

𝜇𝑇(𝑥) = 𝑒𝑥𝑝 (
−(𝑥−𝐸𝑥)2

2𝐸𝑛
2 )                                                                                                         (2) 

In Eq. (2), Ex is the expected value that best represents the qualitative concept. En is the entropy, which represents the 
uncertainty in the judgment of the qualitative concept. He is the hyperentropy, which represents the uncertainty in the 
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entropy. 𝑥 ∼ 𝑁(𝐸𝑥 , 𝐸𝑛𝑛
2), where Enn satisfies 𝐸𝑛𝑛 ∼ 𝑁(𝐸𝑛 , 𝐻𝑒

2). The use of these three numerical characteristics to 

represent a qualitative concept is more in line with the nature of risk evaluation [11]. 

Numerical Characteristics Calculation of the Cloud Model 

The first step of using the cloud model to calculate the membership degree is to convert the threshold division results 
in Table 1 into cloud numerical characteristics that can be used in the cloud model calculation. The calculation equation 
is shown in Eq. (3): 

𝐸𝑥 = (𝐶𝑚𝑖𝑛 + 𝐶𝑚𝑎𝑥)/2

𝐸𝑛 = (𝐶𝑚𝑖𝑛 − 𝐶𝑚𝑎𝑥)/6
𝐻𝑒 = 𝑘𝐸𝑛

}                                                                                                                 (3) 

where Cmin and Cmax represent the minimum and maximum values of each risk level threshold corresponding to the 
evaluation index, respectively; k is constant, determined according to the fuzzy degree of the evaluation index; a value 
of 0.1 was taken in this study. 

As can be seen from Table 1, the evaluation indicators contain both quantitative and qualitative indicators. Among 
them, the qualitative indicators are quantified using a scoring method from 0 to 100, with higher scores indicating higher 

risks. The quantitative values corresponding to different risk levels are as follows, Ⅰ: 0-20, Ⅱ: 20-40, Ⅲ: 40-60, Ⅳ: 60-

80, V: 80-100. The cloud numerical characteristic of each evaluation indicator are shown in Table 3. 

Table 3   Cloud digital characteristics of the different risk levels corresponding to evaluation indicators. 

Evaluation 
indicator 

Risk 
Level 

Engineering geologic requirement X1 TBM drilling parameter X2 

X11 X12 X13 X14 X15 X21 X22 

Ⅰ [10,3.33,0.33] [10,3.33,0.33] [10,3.33,0.33] [5,1.67,0.17] [10,3.33,0.33] [20781,927,92.7] [3.0,1.00,0.10] 

Ⅱ [30,3.33,0.33] [30,3.33,0.33] [30,3.33,0.33] [20,3.33,0.33] [30,3.33,0.33] [15750,967,96.7] [7.0,0.67,0.07] 

Ⅲ [50,3.33,0.33] [50,3.33,0.33] [50,3.33,0.33] [40,3.33,0.33] [50,3.33,0.33] [10750,967,96.7] [11.5,1.17,0.11] 

Ⅳ [70,3.33,0.33] [70,3.33,0.33] [70,3.33,0.33] [60,3.33,0.33] [70,3.33,0.33] [6250,750,75.0] [17.5,2.50,0.25] 

Ⅴ [90,3.33,0.33] [90,3.33,0.33] [90,3.33,0.33] [80,3.33,0.33] [90,3.33,0.33] [2250,750,75.0] [30.0,5.00,0.50] 

Cloud Model Diagram of Evaluation Indicators 

The cloud model properties are demonstrated as an example of a cloud model diagram for the length of penetration, 
X22, as shown in Figure 2. Taking the numerical characteristics of the cloud model corresponding to level IV risk (17.5, 
2.5, 0.25) as an example, the qualitative concepts expressed are: when the value of penetration is 17.5 mm/min, the 
maximum value of entropy is 2.5, and the maximum value of superentropy is 0.25. The possibility of collapse risk level 
IV is the greatest. When using entropy (En) to express the fuzziness and randomness of judgment, its value has 
uncertainty. Therefore, superentropy (He) is used to judge the vagueness and randomness of entropy. The larger He, the 
more discrete the cloud droplets behave, which represents the greater randomness of the value of the membership 
degree. This method is more in line with the essence of evaluation in practical engineering compared to the traditional 
membership degree equation, which can calculate a definite value. 

 

 Cloud model diagram of the length of penetration. 
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Establish the Weight Set 

The weights of the indicators should be determined to get accurate evaluation results. In this study, the hierarchical 
analysis method was used to calculate the weights of the evaluation indicators for the collapse risk in TBM tunnel 
construction. First of all, according to the 1-9 scale method, experts were invited to compare the importance of the 
elements of each layer in the established evaluation system. The comparison results were used as the judgment matrix 
for constructing evaluation indicators, as shown in Eq. (4): 

𝑨 = (𝑎𝑖𝑗)𝑛×𝑛
= [

1 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
1/𝑎1𝑛 ⋯ 1

]                                                                                                (4) 

where n is the number of evaluation indicators; aij represents the importance of the i-th evaluation indicator relative to 
the j-th evaluation indicator. The weight values were then calculated using the Matlab programming software based on 
the principle of the maximum eigenvalue method. 

Because professional subjective judgment is often inconsistent, it was necessary to test the consistency of the judgment 
matrix. The judgment method was expressed as in Eq. (5): 

𝐶𝑅 = ((𝜆𝑚𝑎𝑥 − 𝑛)/(𝑛 − 1))/RI                                                         (5) 

where RI is the average random consistency index and the value rules are shown in Table 4. 

Table 4   The random consistency index [7]. 

n 1 2 3 4 5 6 7 8 9 

RI 0 0 0.52 0.89 1.12 1.26 1.26 1.41 1.46 

If CR < 0.1, the matrix meets the consistency requirement. If CR ≥ 0.1, it means that the matrix does not meet the 
consistency requirement, so the judgment matrix must be reconstructed to calculate the weight until the matrix meets 
the consistency requirement. 

The calculated weights of all the evaluation indicators are used to form the weight vector used for the risk synthesis 
calculation w as shown in Eq. (6) 

𝒘 = [𝑤1 𝑤2 ⋯ 𝑤𝑖]                                                                                                               (6) 

where wi represents the weight of the i-th evaluation indicator. 

Fuzzy Comprehensive Assessment 

According to the established three-layer index system, the fuzzy comprehensive calculation is carried out successively 
from the bottom layer (index layer) to the highest layer (target layer). First, the evaluation factor weight and the 
membership degree of the index layer are calculated. The results are calculated as a single factor evaluation matrix of 
the criterion layer, which is calculated with the evaluation factor weights of the target layer. Finally, the comprehensive 
evaluation vector of the target layer is obtained, i.e., the result of landslide risk grading B. Eq. (7) is the calculation 
method for B: 

𝐵 = 𝑊 ∘ 𝑅                                                                                                                              (7) 

where ‘ ’ is called an operator and represents the operational relation of W and R. 

When an evaluation factor has a large impact on the collapse risk in TBM tunnel construction and other risk factors have 
a small impact, although the factor is given a large weight, its impact on the degree of collapse will be weakened after 
the linear weighted average calculation. This is prone to cause the evaluation results to be inconsistent with the actual 
engineering situation. In this study, the nonlinear fuzzy synthetic operator is used instead of the linearity in the FAHP 
method for comprehensive evaluation. 

The nonlinear fuzzy synthetic operator form can be expressed as follows: 

{𝑓(𝑤1 ,⋯ 𝑤𝑛, 𝑟11, ⋯ 𝑟1𝑛 , Λ) = (𝑤1𝑟11
𝜆1 + ⋯+ 𝑤𝑛𝑟1𝑛

𝜆𝑛)
1

𝜆

𝜆𝑖 ≥ 1, 𝑖 = 1,2,⋯ , 𝑛
                                                                               (8) 
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where Λ is the prominent influence degree coefficient of the evaluation indicator, denoted as 𝛬 = (𝜆1 𝜆2 ⋯ 𝜆𝑛), 
𝜆 = 𝑚𝑎𝑥(𝜆1 𝜆2 ⋯ 𝜆𝑛). The greater the prominent influence degree of the index on the evaluation target, the 

greater the value of i . The method of taking the value of Λ can be determined by referring to the idea of a hierarchy 
analysis method on a scale of 1 to 9. The specific value of Λ is shown in Table 5. 

Table 5   Criteria for determining the prominent influence coefficient. 

Scale Meaning 

1.5 The index factor has almost no influence 
2.5 The index factor has a slightly more prominent influence 
3.5 The index factors have an obvious and prominent influence 
4.5 The index factors have a strong prominent influence 
5.5 The index factors have an extremely prominent influence 

2.9, 3.0, 4.0, 5.0 
Adjacent scale median value, indicating two adjacent values 

The scale of this time between the scales 

Novel Model for Risk Evaluation of TBM Construction Collapse 

The tunnel collapse risk evaluation system for TBM construction could then be constructed. On this basis, the cloud 
model and nonlinear operator are introduced into the traditional FAHP method to improve it. A novel model for 
evaluating the collapse risk of TBM construction based on cloud model-nonlinear FAHP is established. The specific 
evaluation process is shown in Figure 3. 

 

 Risk assessment process of TBM tunnel construction. 

Engineering Example Analysis 

Project Overview 

The excavation diameter of a TBM construction hydraulic tunnel project is given as 7.83 m. Geological conditions in the 
TBM construction section are complicated and several faults fracture zones exist. The width of a fracture zone is 
generally 0.5~2.5m, and it is composed of loose and broken materials such as fractured rock, celestite, and fault (mud) 
gravel, etc. The surrounding rock is prone to fracture due to the development of joints and fissures. Peripheral rock 
joints and fissures have developed and the rock body is easily broken. The tunnel wall is often accompanied by linear 
water flow during the construction in fault fracture zones. Water seepage and dripping are dominant in the non-fault 
fractured section. Under such geological conditions, TBM tunneling construction is very prone to collapse, water surge, 
and other geological disasters. 
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Calculation of Index Weight 

According to the established collapse risk evaluation index system, relevant experts are invited to compare the 
importance of risk evaluation indexes for the specific situation of TBM construction of a water transfer tunnel. The 
criterion layer judgment matrix A and the indicator layer judgment matrixes A1 and A2 are obtained, and the maximum 
eigenvalue method is used to calculate the criterion layer weight value vector w and indicator layer weight vectors w1 
and w2. The specific results are shown in Table 6. 

Table 6   Weight vector of the evaluation index. 

Judgment matrix Is it consistent? Weight vector 

𝐴 = [
1 2

1/2 1
]
 

yes w = (0.667,0.333) 

𝑨1 =

[
 
 
 
 

1 2 4 3 1/2
1/2 1 3 2 1/3
1/4 1/3 1 1/2 1/5
1/3 1/2 2 1 1/4
2 3 5 4 1 ]

 
 
 
 

 
yes w1 = (0.245, 0.122,0.061,0.082,0.490) 

𝑨2 = [
1 3

1/3 1
]
 

yes w2 = (0.750, 0.250) 

According on the calculation results of the weight vector, the seven evaluation indicators for the target layer were 
calculated as (X11, X12, X13, X14, X15, X21, X22) = (0.166, 0.082, 0.041, 0.054, 0.326, 0.222, 0.111). It can be seen that the 
order of importance of the evaluation indexes of the collapse risk of hydraulic tunnel TBM construction was as follows: 

X15＞X21＞X11＞X22＞X12＞X14＞X13. It can be seen that, for this project, the groundwater, total thrust, rock hardness, 

and the length of penetration play important roles in the collapse risk of TBM tunnel construction. It is necessary to 
focus on the changes of these parameters during the construction process. 

Membership Calculation 

The first 2,210 m construction section of a particular hydraulic tunnel was divided into 21 subsections according to the 
geological characteristics, such as lithology and faults. Take the evaluation process of the K5 + 080~K5 + 092 construction 
section as an example. By analyzing and studying the engineering geological conditions of the construction site and the 
real-time digging parameters of the TBM, the quantitative value of each evaluation indicator in this construction section 
was obtained, as shown in Table 7. 

Table 7   Field values of the evaluation indicators. 

Evaluation indicator X12 X13 X14 X15 X21 X22 

Quantification value 30 8 17 13 6520 6.2 

Based on the actual values of the evaluation metrics, the membership degree matrix R1 for X11-X15 and R2 for X21 and X22 
was obtained using the cloud model calculation process. 

𝑹1 = [𝑟11 𝑟12 𝑟13 𝑟14 𝑟15]𝑇 =

[
 
 
 
 

1 0 0 0 0
0 1 0 0 0

0.8315 0 0 0 0
0.1146 0.0009 0 0 0
0.6596 0 0 0 0]

 
 
 
 

𝑹2 = [𝑟21 𝑟22]
𝑇 = [

0 0 0.0002 0.9352 0
0.0081 0.4876 0.0001 0 0

] 

Nonlinear Fuzzy Comprehensive Evaluation 

Determine the Prominent Influence Coefficient of Risk Indicators 

From Table 6, the prominent influence coefficient of two risk factors and seven evaluation indicators was determined 
by combined with the actual construction situation of the project. The prominent influence coefficient of risk factors in 
the index system is shown in Table 8. 

Table 8   Prominent influence coefficient of the first-level risk factors. 

Evaluating indicator X1 X2 X11 X12 X13 X14 X15 X21 X22 

  2.5 1.5 2.5 1.5 1.5 1.5 4.5 2.5 3.5 
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Comprehensive Evaluation of First-Level Nonlinear Fuzzy Comprehensive Evaluation 

The nonlinear fuzzy comprehensive judgment is started from the index layer. The process of calculating the judgment 
result vector B1 of X1 is taken as an example. As can be seen from Table 8, 𝛬1= (2.5 1.5 1.5 1.5 4.5), 𝜆 = 𝑚𝑎𝑥(𝛬1) = 4.5, 
then 

𝐵1 = 𝑓(𝑤1 𝑅1 𝛬1)=(0.245, 0.122, 0.061, 0.082, 0.490)∘

[
 
 
 
 

12.5 0 0 0 0
0 11.5 0 0 0

0.83151.5 0 0 0 0
0.11461.5 0.00091.5 0 0 0
0.65964.5 0 0 0 0]

 
 
 
 

 

= (
(0.2449 × 12.5 + 0.0612 × 0.83151.5

+0.0816 × 0.11461.5 + 0.4898 × 0.65964.5)

1

4.5
,

(0.1224 × 11.5 + 0.0816 × 0.00091.5)
1

4.5, 0,0,0

)=(0.8016, 0.6270, 0, 0, 0) 

Normalization of B1 is obtained: 

B1 = (0.561, 0.439, 0, 0, 0) 

The same steps as above can be calculated as: 

B2 = (0.005, 0.294, 0.003, 0.700, 0) 

Comprehensive Evaluation of Secondary Nonlinear Fuzzy Analysis 

A new one-factor evaluation matrix R = (B1 B2)T was obtained from B1 and B2. The same calculation process as above 
was used to obtain the final comprehensive evaluation vector B, with the weight vector w for nonlinear fuzzy 
comprehensive judgement: 

B = (0.351, 0.315, 0.001, 0.325, 0) 

Determine the Collapse Risk Level 

From the principle of maximum membership degree, it can be seen that maximum Bmax = 0.351 = BⅠ. Therefore, it can 

be concluded that the risk level of construction collapse in the K5 + 080~K5 + 092 excavation section is Ⅰ. According to 

the record of actual construction situation on site, it can be seen that the TBM excavation of the K5 + 080~K5 + 092 
excavation section is smooth. No collapse phenomenon occurs during construction. This is consistent with the risk 
assessment results. 

Risk Assessment Result of TBM Construction Section of a Hydraulic Tunnel 

The other twenty construction sections were evaluated for collapse risk according to the evaluation process of K5 + 
080~K5 + 092. The evaluation results are shown in Table 9. 

Table 9   Evaluation results of 21 construction sections of a tunnel. 

Tunnel mileage X1 X2 X3 X4 X5 X6 X7 
Forecast  
risk level 

Actual collapse scale 
Comparison 

of results 

K5+080~K5+092 27 30 8 17 13 6520 6.2 Ⅰ No collapse phenomenon Consistent 

K5+092~K5+298 53 33 14 15 25 12090 5.1 Ⅰ No collapse phenomenon Consistent 

K5+298~K5+346 52 34 24 15 55 7000 5.8 Ⅱ There are small local drops Consistent 

K5+346~K5+600 57 38 17 16 34 13500 4.6 Ⅱ There are small local drops Consistent 

K5+600~K5+764 45 27 65 14 36 10200 4.9 Ⅲ 
The height of the collapse 
chamber is 0.4 m, and the 
collapse volume is 0.32 m3 

Consistent 

K5+764~K5+812 28 30 34 15 28 11400 6.5 Ⅱ 
5+793 is 2.5 m long, 0.8~1 m 
wide, high 0.2~0.7 m cavity 

appeared 
Consistent 
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Table 9 Continued. Evaluation results of 21 construction sections of a tunnel. 

Tunnel mileage X1 X2 X3 X4 X5 X6 X7 
Forecast  
risk level 

Actual collapse scale 
Comparison of 

results 

K5+812~K5+953 46 28 15 18 53 13100 7.8 Ⅱ 
Cave roof, hole wall local small drop block, 

high 0.05~0.1 m 
Consistent 

K5+953~K6+125 50 67 58 12 35 6450 14 Ⅳ 
Multiple collapse cavity, the largest collapse 

cavity appears at 6+103, the collapse 
volume is about 32 m3 

Consistent 

K6+125~K6+313 48 51 53 13 34 7200 5.8 Ⅳ 
There is a collapsed cavity in the left wall 

between 6+250 and 6+275, with a maximum 
height of about 3 m 

Consistent 

K6+313~K6+337 31 49 51 12 42 8210 5.5 Ⅲ 
There is visible collapse in some parts of the 

cave chamber 
Deviation 

K6+337~K6+472 32 32 54 11 84 11930 6.8 Ⅱ 
There is visible collapse in some parts of the 

cave chamber 
Consistent 

K6+472~K6+484 31  48 14 82   - - Data missing 

K6+484~K6+611 33 31 50 15 75   - - Data missing 

K6+611~K6+626 30 53 52 14 86 7464 6.4 Ⅱ 
Multiple collapse cavity in the cave, the 

collapse height of about 0.4~1 m 
Consistent 

K6+626~K6+830 38 67 57 12 85 11600 7.6 Ⅲ 
At 6+650, there is a collapse cavity at the 
right waistline, about 4 m and about 3 m 

long and about 2 m thick 
Consistent 

K6+830~K6+895 36 39 59 10 5 10400 6.6 Ⅰ 
A large collapse cavity of about 13 m high 

appeared in the cave chamber 
Deviation 

K6+895~K7+000 32 28 48 12 43   - - Data missing 

K7+000~K7+191 48 37 53 13 84 15460 9.2 Ⅱ 
A collapsed cavity appears at 7+040 with a 

maximum height of about 0.7 m 
Consistent 

K7+191~K7+214 35 35 56 12 78 7240 7.7 Ⅱ 
A collapse cavity appears at 7+194, with a 

collapse height of about 0.3~1 m 
Consistent 

K7+214~K7+230 31 32 23 18 6 9000 6.7 Ⅱ No collapse phenomenon Deviation 

K7+230~K7+295 28 33 22 17 5 8580 11.7 Ⅲ 
Local structural surface, there are falling 

blocks 
Deviation 

Discussion 

As can be seen from Table 8, three construction sections could not be rated because of insufficient information. The 
ratings of the remaining eighteen sections showed that fourteen sections were in line with the actual situation on site, 
while four sections had deviations from the actual construction situation on site. The possible reason for the deviation 
is the deviation between the preliminary survey data and the actual situation. Specifically, the preliminary geological 
survey work was not a continuous survey of the tunnel excavation area, which led to a discrepancy between the 
preliminary geological survey and the actual geological conditions. This problem is difficult to avoid in the construction 
process. Therefore, it can be concluded from the evaluation results that this method has a certain degree of reliability. 

In this project, the four evaluation indicators of underground water, cutter-head thrust, rock hardness, and length of 
penetration played an important role in potential construction collapse. As there are many faults and broken zones in 
the construction section, the surrounding rock is very prone to collapse if it encounters groundwater. In addition, TBM 
operators should focus on observing the numerical changes of cutter-head thrust and length of penetration. When 
traversing through the broken ground, measures should be taken to reduce the thrust of the TBM cutter and pass 
through at a constant speed as much as possible without stopping. Once the values of cutter-head thrust and 
penetration change substantially, stop the machine immediately to check the surrounding rock condition in front of the 
palm face. According to the actual situation, do the necessary support measures to avoid sudden large-scale collapse or 
even TBM jamming disaster. 

The traditional FAHP risk evaluation method mostly calculates the evaluation index membership  degree by constructing 
the membership function. Although it reduces the influence of subjectivity compared with direct scoring by experts, it 
needs to take into account all relevant evaluation indicators. This is not only inefficient, but also prone to human error, 
which affects the accuracy and reliability of the calculation results. Moreover, the affiliation degree between the 
evaluation indicators and the risk level obtained by the traditional method is a one-to-one correspondence. In actual 
engineering, the value of a specific evaluation index does not have a one-to-one correspondence with a certain risk level 
and there is fuzziness and randomness. In addition, the traditional FAHP mostly uses linear average arithmetic in the 
comprehensive judgment of the membership degree and weight, which will weaken the influence of the indicators with 
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larger weights on the evaluation results. The proposed model constructed according to the FAHP can well improve the 
randomness and nonlinearity problems in the evaluation of TBM construction collapse risk. Compared with the 
traditional FAHP, the proposed model can well consider the randomness between evaluation indicators and risk level in 
TBM construction collapse risk evaluation. It reduces the effect that using linear operator synthesis will weaken the 
weights of important indicators. 

Conclusions 

This study, targeting the unique characteristics of TBM construction, innovatively developed a risk assessment indicator 
system for TBM construction collapse that incorporates drilling parameters. By introducing the cloud model and 
nonlinear operators, significant improvements were made to the traditional FAHP. The following are the conclusions 
based on this innovative study of TBM construction collapse risk. 

The breakthrough of this research lies in the fact that, compared to traditional drill-and-blast tunneling collapse risk 
studies, we are the first to integrate cutting head thrust and drilling length, two critical TBM drilling parameters, into 
the assessment system. These parameters offer a novel perspective for understanding the surrounding rock conditions. 
Compared to assessment systems based solely on geological conditions, our system is more comprehensive and 
accurately depicts the full spectrum of TBM construction collapse risk. 

This study applies the cloud model to the membership degree calculation in the traditional FAHP method, utilizing the 
three numerical characteristics of the cloud model (Ex, En, He) to replace the precise functional formulas, thereby 
considering the randomness of indicator values and calculations. Moreover, by substituting nonlinear operators for 
linear operators in the calculation of comprehensive risk levels, we can more accurately capture the significant impact 
of high-risk factors on assessment outcomes. These improvements substantially enhance the effectiveness of the 
traditional FAHP method in engineering applications, resulting in more objective and reasonable TBM construction 
collapse risk assessment results. 

This study employed the cloud model-nonlinear FAHP method to conduct a collapse risk assessment of 21 TBM 
construction sections in a hydraulic tunnel project. The assessment results confirmed the efficiency of the proposed 
model, with the assessment outcomes for eighteen sections highly consistent with actual on-site conditions, while only 
three sections could not be rated due to insufficient information. This application example highlights the exceptional 
operability and accuracy of the new model in practical TBM construction collapse risk analysis, bringing significant 
theoretical innovation and practical guidance to the field of tunnel construction risk assessment. 
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