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Abstract 

Alternative fuels play an important role in eco-friendly transport solutions. Wider adoption of alternative blended fuels in 
automobiles is dependent on a better understanding of the blended fuel engine characteristics. This paper presents an experimental 
investigation on the part load combustion characteristics of a multi cylinder spark ignition (SI) engine fueled by E0 and E10 ethanol 
blends. Full factorial Taguchi experimental design was employed to include multi-level engine speed (rpm) and load (throttle %) 
variations. High-speed data acquisition was used to record combustion parameters viz. maximum pressure (Pmax), indicative mean 
effective pressure (IMEP), start of combustion (SOC), mass burn fraction (MBF) and burn duration (Brn_drn) over 300 combustion 
cycles for each experimental run. Grey Relational Analysis (GRA) was used to determine the optimum best and worst engine operating 
conditions based on Pmax, IMEP, MBF and Brn_drn. Cycle-to-cycle variations of Pmax were also examined in detail to identify the 
worst engine operating condition. Random Forest machine learning algorithm was employed to accurately model Pmax and SOC in 
terms of the engine part load operating conditions. This model can be used to predict Pmax and SOC characteristics of an E0/E10 
fueled SI engine under different operating conditions, eliminating the need for extensive testing. 

Keywords: ANN; combustion; E0; E10; Grey Relational Analysis; machine learning; Random Forest; SI engines. 

 

Introduction 

Using renewable and sustainable alternative fuels for automotive engines is essential for reducing the dependence on 
depleting fossil fuels. The extensive consumption of conventional fuels like gasoline and diesel worsens the 
environmental problems and poses a threat to global energy security. Various alternative fuel options are available 
nowadays, which include ethanol, methanol, DME as a substitute for gasoline and diesel. These alternative fuel options 
have shown promise in reducing emissions and enhancing energy sustainability to the researchers (Kodancha et al., 
2020; G. Singh et al., 2021; Bawase & Thipse, 2021; Kavathekar et al., 2021). 

One of the promising alternate fuels for gasoline is ethanol, which offers various advantages over traditional gasoline. 
Ethanol possesses higher octane rating characteristics, enabling the use of a higher compression ratio, further enhancing 
the engine performance. Also, ethanol has inherent oxygen in its chemical structure that promotes cleaner and more 
efficient combustion, further leading to better fuel utilization and reduced emissions. These characteristics of ethanol 
fuel make it an environment-friendly option. Furthermore, ethanol can be produced by using corn, maize, sugarcane, 
broken grains, grass, etc. which are renewable in nature and abundant in the country like India. This renewable and 
localized approach enhances this fuel's prominence while also supporting the agriculture sector. In India, the use of 
ethanol is prominent as India has started the blending of ethanol in gasoline. At present, E10 fuel is notified across the 
country, which ensures 10% ethanol blending in gasoline. This initiative strengthens the government's broader goals of 
reducing the dependence on imported crude oil and enhancing energy security through the use of indigenized fuel. By 
substituting imported crude oil with locally produced ethanol, the country can save significantly on foreign bills. Also, 
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ethanol production and usage produce a lesser carbon footprint than fossil fuels, as the emission produced during 
combustion is absorbed during crop production, making ethanol a carbon-neutral fuel.  

Bharat Stage VI (BS-VI) emissions norms were introduced in India in the year 2020, which poses stringent limits on the 
regulated pollutants such as carbon monoxide (CO), hydrocarbon (HC), nitrogen oxide (NOx) and particulate matter 
(PM) compared to earlier Bharat Stage IV (BS-IV) standards. Additionally, new elements like ammonia (NH3) and 
particulate number (PN) have also been included as regulated pollutants. Due to stringency in the emission norms, 
automotive manufacturers have to enhance the combustion dynamics to improve the engine performance and achieve 
less emissions. Cycle-to-cycle variation in spark ignition (SI) engines creates a challenge for calibration engineers to 
achieve the optimum performance of the engine. This cycle-to-cycle variation is attributed to the fluctuations in the 
peak combustion pressure attained in the combustion chamber during the combustion process across consecutive 
engine cycles for the same load. There are various factors that influence this variation and affect the combustion 
dynamics. Some of the notable factors may be fuel property, fuel atomization, fuel combustion, and flame 
propagation(Rakopoulos et al., 2023). Because of these variations, the engine can have inconsistent engine 
performance, deteriorated fuel efficiency, and increased emission levels, making it challenging to meet strict emission 
standards. Furthermore, variations in peak combustion pressure between consecutive cycles can lead to operational 
instabilities, increased mechanical stress on engine components, and potential durability concerns. The specific factors 
contributing to these inconsistencies can be pinpointed by closely analyzing these discrepancies(Kim & Min, 2023). 

The present study investigated the combustion parameters of a spark ignition engine fueled with E0 (pure gasoline) and 
E10 (a 10% ethanol-gasoline blend). Data on in-cylinder combustion was captured by using a high-speed data acquisition 
system (HSDA) and analyzed further. A comprehensive analysis of cycle-to-cycle variations in peak pressure (Pmax) was 
conducted. The findings were utilized to understand engine performance and to identify adverse operating conditions. 
Additionally, this study explored the optimal part-load engine operating conditions for a spark ignition engine fueled 
with ethanol-blended gasoline fuel. E0 and E10 blends were selected for actual testing and further analysis due to their 
widespread use and relevance in assessing the impact of ethanol blends on engine performance and emissions. Grey 
Relational Analysis (GRA) was used to evaluate the best and worst operating points of the engine. Furthermore, the 
Random Forest and Artificial Neural Network (ANN) machine learning algorithms were applied to model and predict key 
combustion parameters based on different engine operating conditions, providing a robust analytical framework for 
understanding and mitigating the effects of cyclic variability. 

Novelty and Scope of the Present Study 

In real-world driving scenarios, vehicle mostly runs in part-load conditions. In this particular state, the engine operates 
below its maximum capacity and experiences lower thermal efficiency and operational instability. Furthermore, part-
load engine operating conditions affect combustion stability, fuel economy, and emission control due to higher cyclic 
variations. Considering this aspect, part-load conditions were selected for this research work, which mainly focused on 
the cyclic variation of combustion parameters. By analyzing part-load conditions, the study aimed to identify strategies 
for optimizing combustion processes, enhancing stability, and improving overall fuel economy. This further helps in 
contributing to better engine calibration and reduced environmental impact during typical vehicle operation. 

The scope of the present study was limited to E0 and E10 fuel only. These fuels were selected specifically to provide a 
fundamental comparison between pure gasoline (E0) and ethanol blend (E10), which is widely used as commercial fuel 
in India. This choice allowed for a focused analysis of combustion characteristics without introducing the variability 
associated with higher ethanol concentrations (e.g., E15, E20). Further, the results from this study serve as a baseline 
for future investigations involving higher ethanol content, aligning with a stepwise approach to understanding the 
impact of ethanol on engine performance and emissions. Moreover, one of the primary objectives of the study was to 
apply machine learning to predict the SOC and Pmax of SI engines fueled with E0 and E10 based on the selected engine 
operating characteristics. It will be difficult to achieve high prediction accuracy if widely varying ethanol blends’ 
experimental data is used for modeling. Hence, it is more relevant to model the engine parameters of relatively closely 
blended fuels (E0 and E10) from a practical modelling perspective. 

The study also attempted to employ a multi-criteria decision-making technique for identifying the operating envelope 
of engine operating conditions, including optimum best and worst engine operating zones. Furthermore, an ensemble 
learning methodology was used to train a machine learning (ML) model for predictive parametric analysis of combustion 
parameters. Further, this model can be used to define a set of prominent engines working zones that could be beneficial 
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for engine calibration. The scope of combustion parameter analysis was restricted to investigating maximum 
combustion pressure, burn duration, indicated mean effective pressure (IMEP), start of combustion (SOC), and mass 
burn fraction (MBF) only.  

Literature Review 

The extensive exploitation and usage of non-renewable resources of energy have deteriorated the environment on a 
large scale. Hence, it is imperative to explore ways to include renewable energy resources, such as alternate fuels, in 
the transportation sector. However, the transition from conventional to renewable fuels is quite complex and needs a 
lot of attention, especially for managing the variations at the stochastic physical level of combustion. This field requires 
in-depth research with regard to the performance of engines using these fuels/blends, reduction of pollutants, and 
durability of engine parts. SI engines characteristically suffer from cycle-to-cycle variations (CCV) which leads to loss in 
engine power and operation instability (Pera et al., 2014). The causes for the same, in accordance to Heywood, are 
uneven amounts of air, fuel, and recirculated exhaust gas; variation in fuel composition in cylinder engine; and random 
motion of gas particles during combustion (Heywood, 1988),. The aerodynamic fluctuations are also dominant 
contributors to CCV in SI engines (Granet et al., 2012). The qualitative amalgamation of charge and the fuel spray may 
also lead to slow burns or misfiring, eventually adding to CCV(Kazmouz et al., 2021). Chen et al. depicted that a high 
swirl ratio could eventually reduce CCV (Chen et al., 2014). Other researchers (Hanuschkin et al., 2021) employed 
machine learning based on the orientation and shape of flame to predict the overall CCV trends. Another researcher 
(Deng et al., 2021) proposed a quantitative term for intake time pressure value (TPV) to consider the intake charge 
motion and spray fluctuations. They concluded that CCV is very sensitive to engine speeds. In another study, the author 
appropriately summarized the creative application of machine learning to combustion dynamics, combustion 
optimization, and combustion instability. They discussed that due to the stochastic nature of the combustion process, 
real-time analysis and forecasting require the models to recalibrate and retrain regularly to map the effective power 
conversion effectively (Zhou et al., 2022). In another study, the authors looked into the possibility of using machine 
learning to improve engine performance, which might help cut down on the time and expense required for testing 
different sets of alternative fuels (Sonawane et al., 2023). In one of the studies, the author suggested that the GRA 
technique aids in determining the optimal settings for combustion processes. This optimization helps reduce harmful 
emissions and enhance energy output ( Elumalai et al., 2024). Machine learning models can be synchronized with real-
time monitoring systems through ECU to assess engine performance and dynamically adjust the parameters 
continuously (Sonawane et al., 2023; Petrucci et al., 2020). 

Ethanol blend ratio optimization and analysis of their behaviour under varying load conditions support improving engine 
efficiency and reducing harmful emissions while maintaining stable engine operation (Mohammed et al., 2021).  The 
authors investigated the performance, combustion characteristics, and emissions of an automobile engine fuelled with 
ethanol-blended gasoline (E20). It was observed that engine torque and power were increased by up to 2.5% while 
reducing specific energy consumption by the same margin across all engine speeds for E20 fuel. Improvements in 
emissions were also observed with E20 fuel (Singh et al., 2016) Similarly, other researchers studied ethanol-gasoline 
blends up to E35 in SI engine. It was observed that almost all blends achieved higher brake thermal efficiency compared 
to pure gasoline. The best Brake Specific Fuel Consumption (BSFC) was observed with E20 fuel (Kheiralla, A. F., & Tola, 
E., n.d.) Additionally, an increase in thermal efficiency was observed with an increase in the ethanol content. Other 
researchers extended this analysis by studying the effect of ethanol blends ranging from E0 to E100 in spark ignition 
engines. The study concluded that although the power of the engine decreased with higher ethanol concentrations, 
performance got better at lower engine speeds (2500–3000 rpm) (Sasongko & Wijayanti, 2017).Complementing these 
findings, (Thakur et al., 2017) analysed the effect of ethanol-gasoline blends (E5, E10, E20) in SI engines and found 
enhancements in brake power and torque. About a 6% improvement in brake thermal efficiency was recorded for E40. 
It was also observed that BSFC deteriorated with increasing ethanol content. Ahmed, et al. carried out an experiment 
on a genset engine with ethanol-gasoline blends (Ahmed et al., 2017). They concluded that ethanol addition improved 
the overall efficiency with minimal impact on fuel consumption. Supporting this, Saikrishnan et al., studied blends such 
as E0, E5, E10, and E15 in spark ignition engines and found that E5 and E10 offered the best thermal efficiency at a 
constant speed of 2000 rpm, although BSFC increased with higher ethanol content (Saikrishnan et al., 2018). Building 
on these insights, Soe, H., Htike, T. T., & Moe, reported that E20 outperformed gasoline and other blends in brake power, 
torque, and brake thermal efficiency(Soe, H., Htike, T. T., & Moe, 2021). Yang et al. further validated the benefits of 
ethanol, noting increased brake thermal efficiency with higher ethanol concentrations. However, they observed a 
reduction in engine power due to ethanol's lower calorific value in a single-cylinder SI engine tested at various 
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compression ratios (Yang et al., 2022)  . Collectively, these studies underline ethanol's potential to improve engine 
performance, emissions, and efficiency, despite some trade-offs at higher ethanol levels.  

In the current study, an attempt was made to investigate the mapping of deeper levels of cyclic variation in the 
combustion process with engine operating conditions using machine learning. Such modelling would provide a deeper 
insight and comprehension of the intrinsic CCV process, which will help make the engine operation and calibration a 
prescriptive process. 

Experimental methodology 

The present study involved testing of ethanol blend fueled SI engine to identify the optimum best and worst engine 
operating zones based on instantaneous cyclic variations in the combustion process. The experimental procedure 
consisted of testing the engine at part loads using neat Gasoline (E0) and Ethanol-Gasoline blend of 10-90 % by volume 
(E10). The engine was operated at part loads to capture the complete engine operating zone. The fuel properties of the 
fuels used for testing are provided in Table 1. 

Table 1 Properties of test fuels. 

Properties Unit Test Method Gasoline (E0) Gasoline-Ethanol Blend (E10) 

Density (@ 15 °C) Kg/m3 ASTM D-4052 749.6 752.2 
Research Octane Number --- ASTM D-2699 92.1 97 

Reid Vapor Pressure (@ 38 °C) kPa ASTM D-5191 53.8 55.5 
Calorific Value MJ/kg ASTM D-4814 42.6 40.97 

Boiling Point  °C ASTM D-86 201 189.8 

The part load combustion experimental runs were conducted on a 1.2 L passenger car spark ignition (SI) engine with 
four-cylinder, four stroke, multi-point fuel injection for both E0 and E10 fuels. The test engine specifications are provided 
in Table 2.  

Table 2 Engine specifications. 

Engine type SI engine 
Number of cylinders 4 
Bore X Stroke (mm) 73 X 71.5 
Compression Ratio 13.0: 1 

Injection system Multi-point injection 

Ignition Timing  
ECU controlled (depend on 

speed and load) 
Aspiration type Naturally aspirated 

Cubic capacity (cc) 1200 

The same engine type running on different fuels was used to analyze the engine's part load performance. Cyclic 
combustion data was captured using a rapid data acquisition system attached to the engine, which was tested on a 
steady state dynamometer as depicted in Figure 1.  

Table 3 Measurement uncertainty for the high-speed data acquisition system  

S. No Measurement parameters Uncertainty value (@ 95 % confidence level) 

1 Sensitivity 11 pC/bar 

2 Lifetime  108 Cycles 
3 Range 0-200 Bar 
4 Thermal Sensitivity  ± 0.3 % 

The high-speed data measurement device was calibrated up to a pressure of 200 bar with a very high sensitivity. The 
combustion data measurement uncertainty is the characteristic of a stochastic process that is inevitable in measuring 
devices and is as shown in Table 3. Anti-vibration mounts were used to mount the engine on a test bed. Thereafter, 
using a driving shaft, the engine was connected to an eddy current dynamometer. The engine was subjected to the 
intended load at the desired engine speeds using the eddy current dynamometer. 
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 Schematic of engine coupled with eddy current dynamometer (Sonawane et al., 2023) 

Table 4 contains a list of the data collection equipment. The engine's operation was kept within a set of predetermined 
boundary conditions in order to maintain consistency in the outcomes produced by using various fuel blends.  

Table 4 List of Equipment 

S. No Equipment Make 

1 Engine steady state dynamometer AG SAJ-150 

2 Conditioned air handling system CAS - 03 
3 Air flow meter SFI – 09 (ABB SENSYFLOW) 
4 Fuel flow meter FEV 

For instance, the intake air was supplied by the conditioned air system at a pressure of 100 kPa and a temperature of 
25 ℃ ± 2 °. The engine was warmed up initially by applying a random load. A temperature of 80 ℃ ± 2 ℃ for the water 
and 120 ℃ ± 2 ℃ for the oil was maintained prior to initiating the partial throttle performance (PTP) test. 

For each experiment, as outlined in Table 6, the engine was set to full throttle (100%) for both E0 and E10 fuels using 
the N-α mode of the dynamometer. The maximum torque at each engine speed (rpm) was then recorded. Subsequently, 
the dynamometer mode was switched to T-N mode, where the engine’s desired torque and speed were specified as per 
the experiment number as specified in Table 6. In this typical dynamometer mode, the throttle position of the engine is 
automatically adjusted to maintain the required torque and speed, ensuring precise control of the fuel delivery to meet 
the defined engine operating conditions. 

Experimental Design 

The part load combustion runs of the engine were scientifically designed for the different fuels to maintain the similarity. 
The Taguchi method was employed to formulate the design of the experimental layout. The full factorial design of the 
L32 orthogonal array was taken into consideration based on the total number of factors and their respective levels 
(Siddeshware et al., 2021). The experimental factors and their respective levels are tabulated in Table 5.  

Table 5 Experimental factors and levels for full factorial design. 

Factors/Levels Engine Speed Partial Loads Test Fuels 

1. 1000 20 E0 & E10 

2. 2000 30 E0 & E10 

3. 3000 40 E0 & E10 

4. 4000 50 E0 & E10 

The final experimental design for the experimental runs based on the aforementioned factors and levels using the 
Taguchi method is depicted in Table 6. 
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Table 6  The final experimental runs for engine part load combustion measurements (L32 orthogonal array)  

Experiment No. Speed (rpm) Load (%) Fuel 

1 1000 20 E0 
2 1000 30 E0 
3 1000 40 E0 
4 1000 50 E0 
5 2000 20 E0 
6 2000 30 E0 
7 2000 40 E0 
8 2000 50 E0 
9 3000 20 E0 

10 3000 30 E0 
11 3000 40 E0 
12 3000 50 E0 
13 4000 20 E0 
14 4000 30 E0 
15 4000 40 E0 
16 4000 50 E0 
17 1000 20 E10 
18 1000 30 E10 
19 1000 40 E10 
20 1000 50 E10 
21 2000 20 E10 
22 2000 30 E10 
23 2000 40 E10 
24 2000 50 E10 
25 3000 20 E10 
26 3000 30 E10 
27 3000 40 E10 
28 3000 50 E10 
29 4000 20 E10 
30 4000 30 E10 
31 4000 40 E10 
32 4000 50 E10 

 As mentioned earlier, various engine combustion parameters were measured using a rapid data acquisition system. 
The collected data comprised measurements of combustion parameters over 300 high-speed cycles recorded for each 
experimental run. The AVL Concerto software was used for data post-processing.  

Analysis of Combustion Data 

This section presents the combustion parameter data captured by the high-speed data acquisition system for the 
experimental runs described in the previous section. The averaged combustion parametric data for each experimental 
run is tabulated in Tables 7 and 8 for E0 and E10 fuels, respectively. In Tables 7 and 8, Pmax is the maximum pressure 
attained in the combustion chamber (bar), IMEP_COV is the coefficient of variance of Indicated mean effective pressure 
(%), MBF50% is the 50% mass burnt fraction (˚ CA), Brn_Drn is the burn duration of fuel (ms), NHRR is net heat release 
rate (kJ/kgdeg) and CHRR is the cumulative heat release rate (kJ/kg). The Net Heat Release Rate (NHRR) refers to the 
rate at which energy is released during the combustion process within an engine cylinder, providing insight into the 
combustion intensity and timing. The Cumulative Heat Release Rate (CHRR) represents the total amount of energy 
released up to a given point in the combustion cycle. NHRR and CHRR values are also mentioned for E0 in Table 7 and 
for E10 fuel in Table 8, respectively, for better understanding.   

Gasoline engines tend to exhibit greater variability in combustion characteristics, which leads to pressure fluctuations. 
Variations in fuel quality and the air-fuel mixture ratio further affect combustion efficiency, and if not controlled 
precisely, these factors contribute to a higher coefficient of variation (CV) for indicated mean effective pressure (IMEP). 
Additionally, gasoline engines are more sensitive to changes in load and speed, especially at lower engine speeds or 
partial load conditions, which can cause greater pressure fluctuations. These combined factors raise the standard 
deviation of IMEP, resulting in an increased CV. From both the Table 7 and 8, it can be seen that in this particular study, 
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the COV of IMEP for a few speed and load cases is on the higher side than the typical range of 5 to 10%. The higher COV 
suggests combustion instability of the engine on various part load conditions. 

Table 7 The average output mapped data for the experimental runs of E0 fuel.  

Speed (rpm) Load (%) Pmax (bar) IMEP_COV (%) MBF50% (˚ CA) Brn_drn (ms) NHRR 
(kJ/kg 
deg) 

CHRR 
(kJ/kg) 

1000 20 17.848 3.155 12.876 3.665 61.373 1128.963 
1000 30 21.973 2.490 14.885 3.731 51.858 934.070 
1000 40 29.334 14.882 12.197 3.372 67.506 1272.135 
1000 50 42.672 1.820 6.932 2.877 66.669 1492.217 
2000 20 20.270 35.253 14.046 2.265 34.805 725.934 
2000 30 24.675 3.543 9.274 2.070 57.575 1127.317 
2000 40 32.606 3.729 7.097 1.975 50.659 1140.239 
2000 50 41.460 1.827 4.501 1.834 57.382 1403.844 
3000 20 22.375 35.837 5.434 1.208 51.463 1229.146 
3000 30 28.844 16.897 4.105 1.207 48.748 1305.054 
3000 40 37.578 19.430 1.676 1.194 44.111 1305.372 
3000 50 43.903 10.950 1.564 1.182 50.063 1436.649 
4000 20 23.854 10.873 5.616 1.009 45.775 1019.663 
4000 30 27.469 10.179 8.993 1.049 51.732 1004.863 
4000 40 34.904 15.697 7.561 0.987 51.886 1099.363 
4000 50 45.752 22.214 3.653 0.918 56.369 1452.597 

Table 8 The average output mapped data for the experimental runs of E10 fuel.  

Speed (rpm) Load (%) Pmax (bar) IMEP_COV (%) MBF50% (˚ CA) Brn_drn (ms) NHRR (KJ/kg Deg) CHRR(KJ/Kg) 

1000 20 17.143 3.877 14.639 3.731 51.663 863.011 
1000 30 21.626 2.384 14.521 3.824 89.023 1609.224 
1000 40 28.716 15.846 13.425 3.449 71.930 1320.592 
1000 50 38.592 2.237 9.184 3.154 80.146 1583.642 
2000 20 18.658 42.632 21.315 2.444 34.155 607.296 
2000 30 24.630 3.755 9.444 2.120 101.629 2009.556 
2000 40 31.385 2.528 8.351 2.028 66.236 1397.478 
2000 50 41.295 2.328 4.961 1.773 49.354 1228.378 
3000 20 22.452 19.378 5.571 1.178 58.163 1359.849 
3000 30 29.027 13.523 4.738 1.201 58.345 1371.691 
3000 40 36.741 17.312 3.460 1.180 50.416 1341.970 
3000 50 43.722 16.743 2.773 1.181 41.379 1154.691 
4000 20 23.459 25.339 7.208 1.057 47.500 1010.240 
4000 30 28.955 19.665 8.003 0.993 57.071 1044.892 
4000 40 35.710 14.987 7.170 1.006 50.126 1090.621 
4000 50 45.752 22.214 3.653 0.918 57.039 1294.645 

In the present study, the experimental cyclic combustion data was visualized in particular to obtain a deeper 
understanding of engine operation characteristics affecting the maximum combustion pressure.  

The Pmax data of experiments was grouped in clusters of experimental runs comprising load variations under constant 
engine speeds. This grouping enabled a comparison between Pmax variations over 300 combustion cycles due to part 
load variations at constant engine speeds. This data is presented in Figures 2(a) to 2(d) and Figures 3(a) to 3(d) to 
examine the cyclic variability of Pmax and identify the worst engine operating condition. 
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 Cyclic variation of maximum combustion pressure. 
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 Cyclic variation of maximum combustion pressure. 
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The visualizations presented in Figures 2(a) to 2(d), Figures 3(a) to 3(d), and data from Table 9 offer detailed insights 
into the cycle-to-cycle variations of Pmax during the combustion process under varying load conditions. The least 
variation of around 9.982 bar was observed at 1000 rpm and 20% load for E0 fuel, whereas the least variation of 10.435 
bar was observed at 3000 rpm and 20% load point for E10 fuel. On the other hand, it is evident from the data that the 
highest magnitude of Pmax fluctuations occurs at 4000 rpm and 50% load for both fuels analyzed in this study. The 
maximum variation for Pmax was 31.615 bar and 33.433 bar, respectively, for E0 and E10 fuel at 4000 rpm and 50% 
load. This finding underscore that, at 4000 rpm and a medium load condition, the engine exhibits significant instability 
in peak pressure (Pmax), indicating pronounced cycle-to-cycle variability. Such variations contribute to reduced 
combustion efficiency, potential mechanical stress, and increased wear over prolonged operation, adversely affecting 
long-term engine performance. This conclusion of the worst operating point of the engine is derived based on the single 
combustion parameter, which is peak combustion pressure (Pmax) only. So, it became essential to use the other 
technique, which can utilize multiple parameters together to provide a comprehensive result. Hence, to achieve a more 
complete understanding of engine performance and stability, further analysis was conducted using the Grey Relational 
Analysis (GRA) methodology. This technique utilizes multiple combustion metrics, providing a more complete evaluation 
of engine behavior.  

Table 9 Comparison of Pmax variations for different speeds and loads for E0 and E10. 

 

Speed (rpm) Load (%) Pmax - bar (E0) Pmax - bar (E10) 

Minimum Maximum Variation  Minimum Maximum Variation  

1000 20 12.464 22.446 9.982 10.298 22.807 12.509 

1000 30 15.546 28.34 12.794 16.283 29.999 13.716 

1000 40 20.67 38.551 17.881 19.176 37.643 18.467 

1000 50 32.064 48.488 16.424 27.452 47.153 19.701 

2000 20 6.954 33.314 26.360 6.439 36.786 30.347 

2000 30 15.245 32.147 16.902 13.187 32.283 19.096 

2000 40 21.568 40.154 18.586 17.979 38.202 20.223 

2000 50 31.893 48.359 16.466 29.42 47.488 18.068 

3000 20 16.244 26.596 10.352 16.332 26.767 10.435 

3000 30 18.676 33.978 15.302 22.325 33.932 11.607 

3000 40 28.211 43.227 15.016 25.67 42.746 17.076 

3000 50 34.458 49.691 15.233 34.395 49.798 15.403 

4000 20 19.017 29.582 10.565 18.295 29.248 10.953 

4000 30 15.174 33.402 18.228 23.043 35.482 12.439 

4000 40 27.276 42.382 15.106 25.155 43.709 18.554 

4000 50 29.66 61.275 31.615 24.786 58.219 33.433 

Grey Relational Analysis (GRA) Optimization Method  

Grey Relational Analysis (GRA) is a multi-criteria optimization method based on the grey system theory. This theory 
utilizes information and its interrelationships in a "grey" context. The GRA method is widely used in industry to tackle 
various problems related to manufacturing, process, service, design of experiments, and many more (Zhang et al., 2023). 

Grey Relational Analysis (GRA) finds the upper hand when compared to other optimization techniques, as GRA can 
effectively function with a limited dataset compared to the extensive and complete dataset requirement of other 
methods. Hence, the GRA technique became beneficial in scenarios where very limited or partial data is available from 
the experiments. Due to the limited data available in the present study, GRA became the ideal choice among the other 
optimization techniques. Moreover, GRA can tackle multiple interrelated indicators such as maximum pressure (Pmax), 
pressure fluctuations, combustion duration, and emissions very efficiently. GRA provides a ranking of different operating 
conditions by generating a relational grade that quantifies how closely each condition aligns with an ideal reference 
(Sathish Kumar et al., 2023). As a result, GRA proves to be exceptionally valuable for comparing engine performance 
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across various RPM and load conditions for this study, enabling the identification of scenarios that present the most 
significant challenges to stability and efficiency. 

The following are the steps that make up the GRA technique.  

Step 1: The first step involves the consideration of the response attributes. 

Step 2: Normalizing the attributes using the quality characteristics. 

The process fundamentally involves two ways of complex computation which are given as: 

a) The larger the better characteristic, this is given by: 

     𝑋𝑖 =
𝑥𝑖−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛̇
  

b) The smaller the better characteristic, this is given by: 

𝑋𝑖 =
𝑥𝑚𝑎𝑥−𝑥𝑖

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛̇
  

where, Xi is the normalized value of the attribute, xi is the ith value of the attribute, xmax is the maximum value of the 
attribute and xmin is the minimum value of the attribute. 

Step 3: Calculating the deviation sequence which is given as: 

𝑎𝑖 = 1 − 𝑋𝑖   

Step 4: Calculating the Grey Relational Coefficient which is given as: 

𝐴𝑖 =
𝑎𝑚𝑖𝑛+0.5∗𝑎𝑚𝑎𝑥

𝑎𝑖+0.5∗𝑎𝑚𝑎𝑥
  

Step 5: Calculating the Grey Relational Grade (GRG) which is given as: 

𝐺𝑅𝐺 =
1

𝑛
∑ 𝐴𝑖𝑗

𝑛
𝑗=1   

Step 6: Ranking based on grey relational grade to find the best alternatives 

Table 10   The Rank based best alternative using GRA the experimental runs on E0 fuel. 

Speed (RPM) Load (%) DS_Pmax DS_IMEP_COV DS_MBF50 DS_Brn_drn GRG Rank 

1000 20 0.333 0.927 0.371 0.371 0.501 13 

1000 30 0.370 0.962 0.333 0.333 0.500 14 

1000 40 0.459 0.566 0.385 0.501 0.478 15 

1000 50 0.819 1.000 0.554 0.552 0.731 4 

2000 20 0.354 0.337 0.348 0.603 0.411 16 

2000 30 0.398 0.908 0.463 0.676 0.611 11 

2000 40 0.515 0.899 0.546 0.672 0.658 6 

2000 50 0.765 1.000 0.694 0.762 0.805 2 

3000 20 0.374 0.333 0.633 0.667 0.502 12 

3000 30 0.452 0.530 0.724 0.846 0.638 7 

3000 40 0.631 0.491 0.983 0.763 0.717 5 

3000 50 0.883 0.651 1.000 0.916 0.862 1 

4000 20 0.389 0.653 0.622 0.887 0.638 8 

4000 30 0.433 0.670 0.473 0.888 0.616 10 

4000 40 0.563 0.551 0.526 0.861 0.625 9 

4000 50 1.000 0.455 0.761 1.000 0.804 3 
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Table 11  The Rank based best alternative using GRA the experimental runs on E10 fuel. 

Speed (RPM) Load (%) DS_Pmax DS_IMEP_COV DS_MBF50 DS_Brn_drn GRG Rank 

1000 20 0.333 0.925 0.439 0.341 0.509 14 
1000 30 0.376 0.993 0.441 0.333 0.536 13 
1000 40 0.470 0.597 0.465 0.366 0.475 15 
1000 50 0.721 1.000 0.591 0.396 0.677 7 
2000 20 0.347 0.333 0.333 0.494 0.377 16 
2000 30 0.410 0.930 0.582 0.557 0.620 12 
2000 40 0.519 0.986 0.624 0.578 0.677 8 
2000 50 0.846 0.996 0.809 0.645 0.824 2 
3000 20 0.385 0.541 0.768 0.884 0.645 10 
3000 30 0.475 0.642 0.825 0.872 0.703 6 
3000 40 0.656 0.573 0.931 0.883 0.761 4 
3000 50 1.000 0.582 1.000 0.883 0.866 1 
4000 20 0.396 0.466 0.676 0.957 0.624 11 
4000 30 0.474 0.537 0.639 1.000 0.662 9 
4000 40 0.624 0.613 0.678 0.991 0.726 5 
4000 50 0.909 0.476 0.690 0.998 0.768 3 

The GRA procedure was executed in Microsoft Excel as per the aforementioned steps using larger the better 
characteristic for Pmax and smaller the better characteristic for the remaining combustion parameters.  

Tables 10 and 11, respectively, display the ranking hierarchies for the experimental runs of the E0 and E10 fueled 
engines. In Tables 10 and 11, the deviation sequences (DS) represent the normalized deviation of specific performance 
attributes, while the grey relational grade (GRG) signifies the comprehensive performance metric obtained through the 
Grey Relational Analysis (GRA) multi-criteria optimization approach. Utilizing this method on the analyzed mean engine 
combustion data, it was determined that the operating condition of 3000 rpm at a 50% load yielded the highest GRG 
score of 0.866. This outcome indicates that the aforementioned condition achieved optimal engine performance and 
was subsequently ranked as the top-performing scenario among all tested engine operating conditions for both pure 
gasoline (E0) and ethanol-blended fuel (E10). 

Conversely, the analysis revealed that the operating condition of 2000 rpm at a 20% load demonstrated the lowest GRG 
score, marking it as the least efficient alternative in the context of engine combustion performance as evaluated by the 
GRA method. These findings provide a foundation for subsequent research and optimization strategies in the field of 
internal combustion engines. Future investigations could specifically concentrate on re-calibrating and optimizing 
engines that use blended fuels. The aim would be to improve combustion characteristics, even under suboptimal 
conditions, such as those observed at 2000 rpm and 20% load. By fine-tuning the calibration, researchers can potentially 
address performance deficiencies and achieve more consistent and efficient combustion across different engine 
operating conditions. 

Forecasting of Combustion parameters using Machine Learning 

Machine learning-based forecasting results of two important combustion parameters, viz., start of combustion (SOC) 
and Pmax are presented in this section. In this study, machine learning models were developed, which are capable of 
predicting peak combustion pressure (Pmax) and start of combustion (SOC) in an engine based on engine speed and 
load conditions. The methodology and experimental process were designed to ensure that the model is reliable, 
accurate, and robust ultimately eliminating the need for actual testing.  

Trials and Data Acquisition: In this study, 32 distinct runs were performed on the engine. That means engine data was 
captured for 32 different engine speeds and load points. For each unique point, in-cylinder data for 300 combustion 
cycles were recorded with the help of the HSDA system. This results in a total of 9600 data points collected for 32 test 
points (9600 data points = 300 cycles X 32 test runs). These data points capture the engine’s performance characteristics, 
including in-cylinder combustion parameters like peak combustion pressure, start of combustion (SOC), burn duration, 
etc., during each cycle. 

Cycle-to-Cycle Variations: In actual engine operation, each combustion cycle can vary differently from the next, even 
under seemingly identical conditions. These variations can be caused by factors such as temperature fluctuations, fuel 
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variations, mechanical wear, etc. The machine learning model had to address the inherent variation that occurs from 
cycle to cycle. This was crucial for the model to consistently predict the start of combustion (SOC) and maximum power 
output (Pmax) despite the fluctuations between cycles. Additionally, the study emphasized the importance of using 
comprehensive and realistic data to train the machine learning model. This approach enabled the model to learn from 
data that closely reflects the dynamic and sometimes unpredictable nature of real engine operation, rather than relying 
only on idealized or controlled conditions. 

Application of Machine Learning (Random Forest) 

Due to its accurate predictions and computational efficiency across different types of classification and regression 
applications, the random forest method has been widely used for a variety of machine-learning problems (Elumalai et 
al., 2022; Khoshkangini et al., 2023; Sebayang et al., 2017; Shin et al., 2020; Sonawane et al., 2023; Yang et al., 2022). 
This algorithm comprises an ensemble of decision trees, each tailored to user-defined metrics, which collectively 
contribute to generating the final decision values. The workflow of this algorithm is depicted in Figure 4. The scikit-learn 
library resource in python was utilized to apply random forest algorithm on the combustion data collected in the present 
study. The experimental data was split into 80:20 ratio for training and testing respectively. 

As mentioned before, maximum combustion pressure and SOC were predicted using the random forest model. The R  

squared (R2) and mean squared error (MSE) metrics were selected to verify the accuracy of model predictions. The MSE 
and R2 are expressed as follows: 

MSE = 
1

𝑛
∑ (𝑃𝑖 − 𝐴𝑖)

2𝑛
𝑖=1            (6) 

𝑅2 = 1 − 
∑ (𝑃𝑖−𝐴𝑖)2𝑛

𝑖=1

∑ (𝐴𝑖−µ)2𝑛
𝑖=1

           (7) 

Where, Pi  is the predicted value of ith observation, Ai is the actual value of ith observation, µ is the mean value of the 
actual observations and N  is the number of observations 

 

  Flow chart of Random Forest Method. 

The MSE and R2 prediction accuracies for Pmax and SOC are shown in Table 12. These results indicate excellent 
prediction accuracy (in terms of R2 90% and above) of the random forest-based machine learning model developed in 
the current study. The MSE values are also quite low (less than 5%) for both combustion parameters.  
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Table 12  R2 and MSE score of combustion characteristics on experimental data. 

Attributes R2 score MSE 

Pmax 0.91 2.97 

SOC 0.90 3.03 

Specifically, the prediction accuracy for peak pressure in combustion cycles shows a promising result with R2 being 
greater than 0.9 and MSE being less than 3. The machine learning procedure adopted in the present study also ensures 
a reliable prediction accuracy for SOC, which is a complex parameter that changes from cycle to cycle during 
combustion. The cycle to cycle variations are primarily caused due to deviations in the fuel mixture compositions as well 
as thermal distribution differences (Duan et al., 2021). These factors lead to partial combustion or even misfiring in the 
engine cylinder, which makes these parameters difficult to predict. Accurate predictions of these combustion 
parameters are important for precise engine calibrations to achieve better fuel efficiency and minimize emissions. The 
predicted vs. tested Pmax and SOC results were plotted on box plots for proper visualization of their mutual variability. 
The machine learning prediction versus actual engine data box plots shown in Figure 5 clearly depict negatively skewed 
data for the start of combustion in the combustion chamber. Figure 6 also shows a slightly left skewed data for the 
predicted and actual Pmax. These box plot distributions will help engineers to effectively calibrate operating parameters 
for optimum performance of E0 and E10 fueled engines. Figure 5 shows SOC averaging at -5˚ in both predicted and 
actual plots. These plots also show a few outliers in the range of 5˚ to 45˚. This result is an important finding for engine 
calibration engineers to consider retarding or advancing the combustion cycle for achieving the corresponding 
performance and emission characteristics while using E0 and E10 fuels. This prediction of outliers in this regard is also 
important as these outliers indicate misfiring on cycle to cycle basis. Figure 6 shows Pmax averaging at 29 bars. There 
are no outliers in this case. These plots provide key insights into the deeper mechanisms of fuel burning/combustion 
instabilities in the engine. Therefore, machine learning could play a vital role in a better understanding of the fuel 
burning dynamics of E0/E10 fueled engines. 

 

 Box plot representations of prediction (in red) vs actual (in blue) for start of combustion 
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 Box plot representations of prediction (in red) vs actual (in blue) for maximum pressure in each cycle. 

The developed machine-learning models were subsequently evaluated for their predictive accuracy under intermediate 
speed and load conditions, which were not included in the original training dataset. This testing phase aimed to assess 
the model's ability to generalize beyond the data it was trained on, providing insights into its real-world applicability.  

Table 13 compares the tested and predicted values of peak pressure (Pmax) for two fuel types, E0 and E10 at 
intermediate speed and load conditions. The percentage deviation between the tested and predicted Pmax values 
ranged from -7.93% to 9.85% for E0 and -8.08% to 9.33% for E10. The machine learning model demonstrated satisfactory 
predictive accuracy for both E0 and E10 fuels under intermediate speed and load conditions for Pmax. 

Table 13  Comparison of predicted and tested Pmax  

Speed (rpm) Load (%) 
Pmax - bar (E0) Pmax - bar (E10) 

Tested Predicted Variation (%) Tested Predicted Variation (%) 

1500 20 19.12 17.54 8.26 18.98 17.21 9.33 
1500 30 23.35 21.65 7.28 23.25 21.4 7.96 
1500 40 27.89 25.53 8.46 26.89 24.89 7.44 
1500 50 42.11 41.62 1.16 40.02 38.37 4.12 
2500 20 21.21 19.12 9.85 20.86 19.25 7.72 
2500 30 26.82 28.62 -6.71 26.98 28.61 -6.04 
2500 40 35.21 36.77 -4.43 34.15 36.09 -5.68 
2500 50 42.75 41.66 2.55 42.81 41.42 3.25 
3500 20 23.19 23.75 -2.41 23.05 23.78 -3.17 
3500 30 28.33 28.31 0.07 29.08 30.15 -3.68 
3500 40 36.38 38.13 -4.81 36.45 37.91 -4.01 
3500 50 49.95 53.91 -7.93 48.89 52.84 -8.08 

Table 14 compares the tested and predicted values of the start of combustion (SOC) for two fuel types, E0 and E10. The 
percentage deviation between the tested and predicted SOC values ranges from -9.11% to 11.11% for E0 and -7.96% to 
10.53% for E10. Hence, the machine learning model demonstrated satisfactory predictive accuracy for both E0 and E10 
fuels under intermediate speed and load conditions for SOC as well. 

Following the machine learning methodology adopted in the present study, several more blend sets can also be 
anticipated and verified in accordance with the specifications of calibration experts. This methodology could also help 
to better understand the impact of cyclic variations on the engine under several loading conditions. The GRA 
methodology is also very useful to optimize engine operation. Once the ranking of the experimental parameters is 
tabulated, it becomes very easy to identify the highest and lowest-ranked experimental runs. These results can be taken 
forward to resolve the engine operation zone bottlenecks. Detailed and focused analysis of these bottlenecks will reveal 
deeper aspects of fuel-burning dynamics under varying loading conditions. 
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Table 14  Comparison of predicted and tested SOC 

Speed (rpm) Load (%) 
SOC – Deg BTDC (E0) SOC – Deg BTDC (E10) 

Tested Predicted Variation (%) Tested Predicted Variation (%) 

1500 20 -0.54 -0.48 11.11 0.7 0.73 -4.29 
1500 30 -0.85 -0.77 9.41 1.05 1.12 -6.67 
1500 40 -1.45 -1.49 -2.76 0.95 0.85 10.53 
1500 50 -2.25 -2.1 6.67 -0.78 -0.7 10.26 
2500 20 -7.1 -6.4 9.86 -5.4 -5.83 -7.96 
2500 30 -6.3 -6.82 -8.25 -5.95 -6.27 -5.38 
2500 40 -7.9 -8.62 -9.11 -6.8 -7.3 -7.35 
2500 50 -7.35 -7.8 -6.12 -7.05 -7.5 -6.38 
3500 20 -7.8 -7.23 7.31 -6.75 -7.26 -7.56 
3500 30 -4.85 -4.45 8.25 -6.15 -5.54 9.92 
3500 40 -5.58 -5.05 9.50 -5.68 -5.33 6.16 
3500 50 -5.65 -5.08 10.09 -5.76 -5.16 10.42 

The Taguchi-GRA-Random Forest methodology presented in the current work helps calibration engineers to understand 
the cycle-to-cycle variation in a better manner and also potentially reduces the entire duration and expense of a new 
research and development project using blended fuels. The comparison of algorithms with various sets of blends can 
be an idealistic approach to expand this study to comprehend the impact of higher oxygenated fuels on combustion 
cyclic variability. 

Application of Machine Learning (Artificial Neural Network) 

Furthermore, the outcome of the Random Forest Machine Learning model was compared with the output from the 
Artificial Neural Network (ANN) model for the same dataset. The implemented Artificial Neural Network (ANN) consisted 
of a 2-layered feedforward network designed for predicting outcomes based on input features. The key characteristics 
and configurations of this ANN architecture are shown in Figure 7 and explained below. 

ANN Architecture 

The input layer accepts the input features that represent the relevant parameters for the problem at hand. The size of 
the input layer corresponds to the number of features in the dataset. In this study, the dataset that was used for Random 
Forest was fed to the ANN model as well. A total of 9,600 data points collected across all trials were used as input for 
ANN modeling. The SOC and Pmax for E0 and E10 were predicted using the ANN model. A sigmoid activation function 
was applied in the hidden layer to introduce non-linearity. Finally, the output layer produced the final predicted values. 

 

 Two-layered feed forward neural networks (Al-Aboodi et al., 2017). 

Working Mechanism of Feed Forward Network 

In this network, the input data is passed through the network, layer by layer. Weights and biases are applied to 
transform the inputs at each layer. The sigmoid activation function in the hidden layer allows the network to capture 
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non-linear patterns in the data. During training, weights and biases are adjusted iteratively using backpropagation and 
an optimization algorithm, such as gradient descent. This process aims to minimize the error between the predicted 
output and the actual output. 

Algorithm Settings 

The following algorithm settings were used during the ML modeling: 

Data division: Random 
Training algorithm: Levenberg-Marquardt. 

The termination criteria defined for this network is shown in Table 15. 

Table 15   Termination Criteria 

Unit Target Value 

Epoch 1000 
Elapsed Time ∞ 
Performance 0 

Gradient 1e-07 
Mu 1e+10 

Validation Checks 6 

Output 

The performance output of the ANN model for predicting Pmax (maximum pressure) and SOC (start of combustion) for 
two fuel types, E0 (pure gasoline) and E10 (10% ethanol blend), is tabulated in Table 16. The performance was evaluated 
using the R² score (coefficient of determination) and Mean Squared Error (MSE). 

Table 16  R2 and MSE score for ANN Predictions  

Attributes 
R2 score MSE 

E0 E10 E0 E10 

Pmax 0.9462 0.9478 9.8964 8.8539 
SOC 0.6506 0.6521 16.3086 19.1537 

The model establishes strong performance in predicting Pmax, as evidenced by high R² values and low mean squared 
error (MSE) for both fuel types. The slightly better performance for E10 suggests that the model effectively captures the 
combustion dynamics of ethanol-blended fuel. In contrast, the model's performance in predicting SOC is moderate, 
displaying lower R² values and higher MSE compared to Pmax. The marginally improved metrics for E10 indicate that 
the model adapts somewhat more effectively to the characteristics of ethanol-blended fuel when predicting SOC, 
although there is still significant room for improvement. 

Comparison with Random Forest ML model 

The outcome of the Random Forest (RF) model illustrates notable predictive accuracy for both Pmax (maximum 
pressure) and SOC (start of combustion). The R² scores of 0.91 for Pmax and 0.90 for SOC indicate high level of reliability. 
Furthermore, the low Mean Squared Error (MSE) values of 2.97 for Pmax and 3.03 for SOC highlight the model's 
effectiveness in making precise predictions with minimal error. Overall, this level of accuracy shows that the model is 
reliable and capable of forecasting combustion dynamics under a variety of circumstances. 

Thus, the Random Forest (RF) model can overcome the accuracy constraints that often affect the use of Artificial Neural 
Networks (ANNs). This ensemble approach improves generalization and decreases overfitting. Unlike ANNs, which can 
be sensitive to noise and require extensive tuning, RF builds multiple decision trees using random subsets of both data 
and features. By averaging the predictions from these trees, RF improves stability and accuracy. This makes RF 
particularly effective for handling non-linear relationships and complex interactions, such as those influencing the start 
of combustion (SOC). Furthermore, RF is less dependent on big datasets and is capable of processing numerical and 
categorical data, which makes it appropriate for situations with little data. Its capability to rank feature importance 
provides valuable insights, enabling targeted data collection or refinement of input features. For SOC prediction, RF's 
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resilience to outliers and its ability to model subtle interactions between variables such as fuel properties, load, and 
speed can significantly enhance performance.  

Calibration Strategies Based on GRA Results 

Based on the findings of the study, 2000 rpm and 20% load conditions were found to be critical engine load and speed 
conditions. Following engine calibration strategies can be used to mitigate the effect of the particular engine operating 
point.   

1. Ignition Timing Optimization: Calibrating the ignition timing more accurately could help to reduce cycle-to-cycle 
variability and enhance combustion efficiency. During the engine optimization process, the engine has to be set to 
2000 rpm and 20% load by using the engine dynamometer speed-torque mode. Once the engine is set to the 
desired condition, the calibration engineer has to vary the ignition timing by 2-3° in the step of 0.5° to arrive at the 
optimal ignition timing corresponding to the least possible fluctuations in Pmax. 

2. Air-Fuel Ratio (Lambda) Control: Improving the control systems for adjusting the air-fuel mixture can achieve 
optimal combustion based on predicted Start of Combustion (SOC) and Peak Pressure (Pmax) values. This may lead 
to better fuel economy and lower emissions by minimizing incomplete combustion. Once the engine is set to the 
desired condition, the calibration engineer has to vary the air-fuel ratio (λ) around 1 (λ =1, stoichiometric condition) 
by adjusting the throttle body opening and fuel delivery. The λ is varied from 0.995 to 1.005 to achieve the 
optimum engine combustion performance. 

3. Engine Load and Speed Management: Implementing adaptive strategies for managing engine load and speed, 
particularly in operational regimes highlighted by the study as prone to irregular combustion. This includes real-
time monitoring and adaptive calibration algorithms to address performance issues under low-load and low-speed 
conditions. 

4. Knocking Detection and Mitigation: The knock detection system can be refined by utilizing predictive SOC and 
Pmax data. Improved calibration can proactively adjust ignition timing and fuel delivery to prevent engine knock, 
thereby enhancing the engine's longevity and reliability. 

5. Engine Control Algorithms (Real-Time): Predictive data can be used simultaneously in advanced real-time control 
algorithms to adjust the multiple engine parameters, ensuring consistent performance across various operating 
conditions. 

6. These calibration enhancements, based on the study's insights into cycle-to-cycle variations and predictive 
modeling, could greatly enhance engine performance, efficiency, and emissions control. 

Conclusions 

The cycle-to-cycle variations of in-cylinder combustion parameters in spark ignition (SI) engines operating on E0 and E10 
fuel blends were examined in this study. The full factorial Taguchi method was used to define the test matrix. 
Accordingly, experimentation was conducted with both E0 and E10 fuels. The in-cylinder combustion data was captured 
using the HSDA system, and parameters like peak combustion pressure (Pmax), burn duration, and IMEP were derived. 
After analyzing the data, considerable cycle-to-cycle variation was observed for Pmax and other combustion 
parameters.  Furthermore, the Grey Relational Analysis (GRA) technique was used to identify the optimal and 
suboptimal operating conditions for both E0 and E10 fuels. The research highlighted a gap in the existing literature, 
suggesting the promising application of machine learning techniques to correlate these variations with different engine 
operating conditions. Considering this, random forest and artificial neural network machine learning modeling were 
applied to the engine test data to predict the start of combustion (SOC) and maximum combustion pressure (Pmax) 
under various engine RPM and load scenarios. A total of 9600 data points gathered over 32 test runs was used to train 
and test the machine learning models. Box plots were employed for comparative visualization between actual and 
predicted SOC and Pmax results. The summary of the research findings is presented as follows: 

1. The highest magnitude of Pmax fluctuations occurs at 4000 rpm and 50% load for both fuels analyzed in this study. 
The lowest magnitude of Pmax fluctuations occurs at 1000 rpm and 10% load for E0 and at 3000 rpm and 20% load 
for E10 Fuel. 

2. Grey Relational Analysis (GRA) showed that the 3000 rpm and 50% load combination was optimal, while the 2000 
rpm and 20% load conditions were the least favorable. 

3. The Random Forest model’s prediction accuracy for SOC and Pmax was confirmed by R-squared values exceeding 
90% and mean squared errors below 3%. 
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4. The Random Forest machine learning model predicted an average SOC of -5° crank angle and a maximum pressure 
of 29 bars, thus providing reliable data for recalibration to enhance engine performance and emissions. 

5. The ANN model predicts Pmax accurately, with better performance for E10, while SOC predictions are moderate, 
highlighting the need for improvement, especially for ethanol-blended fuels. 

The primary outcome of this machine learning-based approach is to predict the engine operating characteristics of E0 
and E10 fuel at any combination of engine rpm and loading conditions. This methodology reduces the time and cost of 
testing the engine under different conditions. Also, this study shows that the issues related to cyclic variations at part 
load engine operating conditions can be identified and managed by operating the engine at optimal speed-load 
conditions.  
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