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Abstract 

Diesel generators (gensets) are essential in India for industries, construction, agriculture, and as backup power for hospitals and data 
centres. Common fuels include diesel, petrol, natural gas, and, increasingly, solar energy, with hybrid systems gaining popularity for 
improved efficiency and reduced emissions. Diesel gensets remain reliable and cost-effective, especially in remote areas, but growing 
environmental concerns are driving adoption of cleaner alternatives like compressed natural gas (CNG), bio-CNG, and dual-fuel 
systems. HCNG (hydrogen-enriched compressed natural gas) gensets are more efficient and environmentally friendly, though they 
require greater initial investment. Adding hydrogen enhances combustion and reduces emissions. In this study, various HCNG blends 
were tested on a multi-cylinder, single-speed gas engine. Experimental evaluation of combustion and performance characteristics is 
typically time and resource-intensive, so Machine Learning (ML) was applied to streamline the process, thereby minimizing the 
number of required experiments. The engine performance is assessed using the engine dynamometer, whereas the combustion 
characteristics are obtained from the High-Speed Data Acquisition (HSDA) system. A Random Forest (RF) regression model was 
developed to predict performance and combustion characteristics for higher HCNG blends from lower-blend data, with 
hyperparameter optimization used to improve accuracy and minimize overfitting. Predicted values were validated against 
experimental results, showing strong correlations. Key parameters like Brake-Specific Fuel Consumption (BSFC), Brake Mean Effective 
Pressure (BMEP), Exhaust Temperature, Maximum In-Cylinder Combustion Pressure (Pmax), Indicated Mean Effective Pressure 
(IMEP) and Combustion Duration were predicted, with evaluations showing strong correlations between predicted values and actual 
results. 
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Introduction 

CNG as Fuel 

In recent years, the increase in global population and urbanization has led to a significant increase in demand for oil, 
gas and iron ore consumption. Concurrently, the expansion of the economy and technological progress have played an 
important role in forcing developing countries to increase their needs for energy and metal resources. Increased 
investment in the discovery of oil, gas and mining is being actively encouraged to meet the estimated future demand in 
many countries. Subsequently, increased production activities, industry expansion and rising investments resulted in an 
increased requirement for high-capacity generators. These generators are indispensable in oil, gas and mining areas, 
where they play a required role in heavy-duty operations such as drilling and excavation. In nations where there is 
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frequent power scarcity, generators play an important role as they provide a reliable backup power supply. Increasing 
urbanization worldwide has increased the requirement for a consistent and reliable power source, resulting in the 
worldwide demand for generators (Fact.MR, 2024). 

Compressed natural gas, or CNG, is now being used as a fuel choice for generators in cities and nearby areas. People 
rely on it because it offers cleaner energy that works better. CNG burns cleaner than diesel or petrol. Availability through 
pipeline systems also lessens the hassle of fuel storage and transportation. Generators powered by natural gas release 
fewer emissions and perform better with heat conversion. This makes them ideal in places with strict environmental 
rules or as backup power in critical locations like hospitals or office buildings (Prasad Rao & Karthikeya Sharma, 2020). 

The Central Pollution Control Board (CPCB), which operates under the Ministry of Environment, Forest and Climate 
Change (MoEF&CC), sets emission rules for generator sets using CPCB standards. The new CPCB Stage IV+ norms now 
demand stricter goals requiring a 90% cut in NOₓ and particulate matter emissions when compared to those outlined in 
the CPCB Stage II standards. These rules push for changes in generator technology, such as adding electronic fuel 
injection, exhaust gas recirculation, and modern after-treatment systems (Mustafi & Agarwal, 2019).  

Natural gas, which is methane, stands out among fuels due to its strong anti-knock properties. These properties allow 
spark ignition engines to work at higher compression ratios, increasing their overall efficiency. When compared to 
gasoline and diesel, engines running on compressed natural gas (CNG) produce fewer emissions of carbon monoxide, 
nitrogen oxides, and unburned hydrocarbons (Lather & Das, 2019). But CNG burns and has limited flammability, which 
can cause incomplete combustion or misfires under some conditions. This sometimes releases unburnt methane, a 
greenhouse gas that reduces some of its low-carbon benefits (Singh et al., 2016). The properties of CNG and Hydrogen 
as a fuel are given in Table 1. 

To address these challenges, experts suggest using HCNG as a mixed fuel option. HCNG makes combustion better by 
speeding up the flame, shortening the ignition delay, and extending the lean burn range. This leads to steadier and fuller 
combustion, which lowers CO and HC emissions. Adding hydrogen also supports a steady shift toward using hydrogen 
in internal combustion engines while still working with existing fuel systems (Mustafi & Agarwal, 2019; Pathak et al., 
2024). Studies show that HCNG cuts both regulated and unregulated emissions more than regular CNG during real-
world operations like those specified in the ISO 8178 protocol (Singh et al., 2016). Using HCNG in generators shows 
potential to meet future emission standards while keeping performance reliable. 

Table 1 Summary of physical parameters. 

Property CNG Hydrogen 

LHV (MJ/kg) 45.3 120.1 

Burning velocity in NTP air (cm/s) * 45 325 

Flame speed (m/s) * 0.37 1.7 

Density at NTP (kg/m3) 0.668 0.0837 

Calorific value (MJ/kg) 48.35 150 

Adiabatic Flame Temperature in air (K) 2148 2318 

Auto ignition temperature (K) 813 858 

Equivalence ratio 0.7-4 0.1-7.1 

* - Laminar flame speed and burning velocity value are measured in standard conditions: environment pressure (1 ATM), initial temperature ~ 298 K, 
and using dry air as oxidizer. Reported flame speeds are the approximate values to suit the near-stoichiometric conditions (equivalence ratio ≈ 1.0). 

Mixing hydrogen with CNG to produce HCNG helps in cutting down carbonyl emissions like formaldehyde and 
acetaldehyde. Hydrogen boosts combustion by increasing flame speeds, lowering ignition delay, and broadening 
flammability limits. Together, these changes lead to more thorough oxidation inside the engine cylinder (Zareei et al., 
2020). Carbonyl compounds form during partial oxidation of hydrocarbons under fuel-rich or ignited conditions in CNG. 
Including hydrogen aids in generating more radicals such as H+ and OH-, which speed up oxidation reactions and reduce 
the time intermediate compounds stay in the process, curbing carbonyl emissions (Gong et al., 2016). Using HCNG also 
leads to higher temperatures and shorter burn times inside the engine, cutting back on incomplete combustion 
pathways. This has been shown in research to lower aldehyde emissions in engines running on HCNG when compared 
to those using standard CNG. This demonstrates how hydrogen supports cleaner and smoother combustion systems. 
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Blending Hydrogen and CNG 

Adding hydrogen to fuel mixtures creates notable effects. Hydrogen burns seven times faster than methane. This faster 
burning speed could improve combustion properties by shortening combustion times and boosting constant volume 
efficiency. Mixing hydrogen with natural gas enables leaner mixtures to reduce emissions (Park et al., 2011). HCNG, 
meaning hydrogen-enriched compressed natural gas, emerges as a promising option to replace traditional fossil fuels, 
cutting pollutants and enhancing engine performance. HCNG use could lead to sizeable drops in hydrocarbon and 
carbon monoxide emissions and might lower NOx emissions if the spark timing is optimized. This makes HCNG a strong 
candidate to provide cleaner energy choices for automotive uses (Choi et al., 2011). 

Methane burns with a laminar flame speed eight times slower than hydrogen. Blending even a small amount of 
hydrogen with CNG shortens combustion times. Studies have measured how fast flames move in mixes of air, hydrogen, 
and methane at varying hydrogen levels and equivalence ratios. Results show that adding even a little hydrogen boosts 
combustion efficiency and cuts down on harmful emissions. This makes HCNG an option worth considering to produce 
cleaner energy (Ishaq & Dincer, 2020). 

Adding hydrogen to CNG increases the fuel's quenching distance and lowers its carbon-to-hydrogen ratio. This change 
leads to more complete combustion while also cutting down HC and CO emissions. Hydrogen also expands the 
flammability range of CNG and makes lean combustion better. It helps reduce NOx emissions as well. Combining 
hydrogen with CNG speeds up the production of OH and H+ radicals. These radicals boost the combustion rate of CNG 
by enhancing reaction rates (Sofianopoulos et al., 2016). Using hydrogen in this way, the study aims to examine how 
HCNG compares to CNG in effectiveness. 

Using a hydrogen-natural gas mix as fuel comes with some big challenges. Picking the right balance of hydrogen and 
natural gas is one of the hardest parts. If the hydrogen level goes beyond a safe point, and the air-fuel ratio or spark 
timing isn’t set correctly, weird combustion can happen. Things like pre-ignition, knocking, or even backfiring may occur. 
To tackle these issues well, adjusting the air-fuel ratio and spark timing becomes crucial. This fine-tuning helps get the 
most out of HCNG while also reducing the risks that come with abnormal combustion. 

Literature Review 

Hydrogen-enriched compressed natural gas, often called HCNG, draws significant attention as a cleaner option to 
replace traditional fuels. It has the ability to improve how fuel burns and cut down on emissions containing carbon. 
Research demonstrates that adding more hydrogen to CNG blends boosts the efficiency of combustion. It does this by 
increasing in-cylinder pressure, how fast heat gets released, and how quickly the pressure builds. One example includes 
findings by Pandey et al. They recorded lower levels of CO, CO₂, and HC emissions and noted better brake thermal 
efficiency when the hydrogen content was higher. However, they also noted that NOₓ emissions tend to increase with 
hydrogen enrichment, though this effect is mitigated under high excess air ratios (Pandey et al., 2022). 

Hydrogen addition is particularly effective under lean-burn and low-load conditions, as demonstrated by De Simio et 
al., who tested HCNG blends in light-duty and heavy-duty engines. They found combustion improvements to be more 
significant at low speeds and loads, although the overall engine efficiency gains were marginal under stoichiometric 
conditions (De Simio et al., 2011). Similarly, Hora and Agarwal documented that higher hydrogen concentrations (10–
30%) improved BTE, brake-specific fuel consumption (BSFC), and combustion behaviour, especially at higher loads, with 
a trade-off in increased NOₓ emissions. Enhanced performance was attributed to better combustion stability, elevated 
peak cylinder pressures, and improved cumulative heat release (CHR) (Hora & Agarwal, 2016). 

In terms of thermal efficiency and energy density, several studies have evaluated the effects of stoichiometric and lean 
combustion regimes. Park et al. demonstrated that increasing hydrogen content up to 40% improved thermal efficiency 
and reduced CO and CO₂ emissions without affecting total hydrocarbons (THC). They also found that retarded spark 
timing yielded better emissions control than MBT ignition under HCNG operation (Park et al., 2011). Liu et al. further 
confirmed that thermal efficiency increases with hydrogen energy content, especially at lower engine loads, although 
NOₓ emissions rise correspondingly (Liu et al., 2017). On the contrary, Michikawauchi et al. reported that stoichiometric 
conditions reduced energy density and cruising range, although lean burn conditions using 50% hydrogen resulted in a 
12% thermal efficiency gain compared to stoichiometric methane (Michikawauchi et al., 2011). 



Enhancing Random Forest Model Accuracy using GridSearchCV Optimization    691 
DOI: 10.5614/j.eng.technol.sci.2025.57.5.9 
 

 

The lean-burn capability and stability of HCNG blends were further explored by Deng et al., who found that increasing 
hydrogen content from 0% to 75% improved indicated thermal efficiency, reduced cycle-to-cycle variations, and 
expanded the lean-burn limit. They highlighted that ignition timing optimization is critical to balance efficiency and 
emissions (Deng et al., 2011). Verma et al. studied blends ranging from 0% to 100% hydrogen to analyze their properties. 
They found that blends with an H/C ratio of 4.5 performed best in terms of heat efficiency. However, using pure 
hydrogen resulted in less efficiency because it has a lower energy density by volume (Verma et al., 2016). 

Using machine learning (ML) algorithms alongside experimental research has helped predict combustion characteristics, 
cut down experiment time, and improve accuracy. Random Forest (RF) models show strong ability to capture complex 
nonlinear patterns in combustion data. Yang, Yan, Sijia, et al. compared ML models like RF and Artificial Neural Networks 
(ANN) to predict emissions such as CO, UHC, and NOₓ. They found both models work well, but RF models stand out with 
their reliability and easier interpretation (Yang, Yan, Sijia, et al., 2022). In another study, Papaioannou et al. applied RF 
models to predict particulate number, concentration, and geometric standard deviation in gasoline direct injection 
engines. Their findings highlighted engine power and blowby as key factors through permutation importance 
(Papaioannou et al., 2021). 

Artificial Neural Networks, or ANNs, work well in handling multi-output modelling. Research by Yang, Yan, Sun et al. 
created an ANN model that gave accurate predictions for power, combustion timing like CA50, and emissions such as 
CO, UHC, and NOₓ. Their model reached R² scores higher than 0.97 (Yang, Yan, Sun, et al., 2022). Mehra et al. took a 
similar approach with an ANN model focused on a turbocharged HCNG engine. This model predicted torque, BSFC, and 
different emission levels with strong accuracy and minimal error using inputs like air ratio, engine load, and fuel mix 
(Mehra et al., 2018). 

Support Vector Machines (SVMs) hold potential when dealing with small datasets and intricate patterns. Hao et al. 
applied SVMs to make predictions about torque, BSFC, and NOₓ in HCNG engines. Their results showed that SVMs 
achieved accurate predictions by modelling how the excess air ratio and ignition timing affect performance (Hao et al., 
2020). 

Alongside standard models, researchers have used hybrid and ensemble methods to study fuel-blend performance. 
Sonawane et al. applied the TOPSIS approach to estimate key performance factors like power, torque, and combustion 
time in ethanol-gasoline mixtures. Their results showed R² values above 0.95 and MAPE ranging from 1% to 5%, pointing 
to strong potential for accurate calibration (Sonawane et al., 2023). In a similar exploration, Airamadan et al. evaluated 
combustion stability and fuel use in spark-assisted gasoline compression ignition engines by comparing models like 
CatBoost linear regression, SVM, and RF. Leave-one-out cross-validation confirmed the generalization capabilities of 
these models across varying operational regimes (Airamadan et al., 2022). 

In summary, literature underscores the dual advantage of HCNG as a low-emission, high-efficiency fuel and machine 
learning as a critical enabler for predictive combustion modelling. Hydrogen enrichment enhances combustion quality, 
particularly under lean conditions, while ML models such as RF, ANN, SVM, and hybrid approaches offer high-accuracy 
prediction tools for emissions and performance. When coupled with hyperparameter optimization strategies like 
GridSearchCV, these models can significantly reduce experimental requirements, support calibration strategies, and 
accelerate the deployment of cleaner internal combustion technologies. 

Even with progress in HCNG engine modelling and predictive combustion tools, key research challenges remain. Most 
machine learning studies stick to single-cylinder engines or rely on simulated setups, offering little validation on multi-
cylinder engines that mirror how engines perform in real-world settings (Sahoo et al., 2022). Research also overlooks 
how we can scale performance data from low hydrogen blends to high ones. This method could make experiments less 
time-consuming (Farhan et al., 2024). Most predictive tools either concentrate on emissions or performance, but fail to 
combine crucial combustion factors like Pmax, IMEP, and combustion duration into a single model (Duan et al., 2023). 
Optimization of models, through methods such as GridSearchCV, is also underused in Random Forest or Artificial Neural 
Network-based approaches (Rao et al., 2023). 

To tackle these issues, this study tests different HCNG blends on a multi-cylinder engine running at a constant speed. It 
uses a high-resolution data acquisition tool for more precise measurement. A Random Forest regression model helps 
predict combustion behaviour and engine performance. Data from lower blends is used to estimate the behaviour of 
higher blends. Hyperparameter tuning refines the model to improve prediction accuracy and reduce overfitting. By tying 
together both combustion and performance predictions under one system and validating it through real-world 
experiments, this work takes a step toward creating more efficient, reliable, and scalable HCNG engine models. 
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Methodology 

The methodology for engine testing, experimentation, and selecting the appropriate machine learning model for this 
study is provided in the following sections. 

Experimentation 

The study was done on a water-cooled, naturally aspirated, inline, 6-cylinder SI engine, equipped with a three-way 
catalytic converter as an after-treatment system. This engine has a wedge-type combustion chamber, which is typically 
used in SI engines. Specifications of the test engine are given in Table 2. This engine was connected to a SAJ make, 
150kW capacity, and an eddy current dynamometer using a cardan shaft. CNG and various HCNG blends were used as 
test fuels. The air-fuel mixture was inducted into the intake manifold through the throttle body. The real-time fuel mass 
flow rate was acquired by installing a Coriolis mass flow meter (Emerson, CMF010M). 

Table 2 Engine Specifications. 

Displacement 6.59 L 
Aspiration Naturally Aspirated 

Engine Type Inline, Single Speed 
Compression Ratio 17.5:1 

Polytropic Coefficient 1.37 
Rated Power 55 kW 
Rated Speed 1500 RPM 

The assessment followed a 3-mode test cycle (D2) for a constant-speed engine, as outlined in ISO 8178-4 and shown in 
Figure 1. The manufacturer-specified rated power and rated speed of the engine can be utilized to compute the 
maximum load (in Nm) to be applied to the engine. The engine is tested at 100%, 75%, and 50% of the rated torque. 
The list of equipment used for the experimentation is given in Table 3. 

 

 ISO 8178 D-2 Test Cycle. 

Table 3 List of Equipment used for experimentation. 

Dyno make SAJ AG 150 
Air Flow meter ABB Sensiflow SFI-11 

Air Conditioning Unit KS CAHU 
Raw Emission Measurement System AVL AMA i60 

Fuel Flow Meter Emerson, CMF010M 
Combustion Pressure Sensor AVL GH12D 

HSDA system AVL Indimicro 

The engine is first warmed up so that the oil temperature is above 65℃. The engine is then set at 100% load condition 
using the T% mode of the engine dyno. The emission data and other engine performance parameters are recorded once 
the engine achieves stability for the set point. This point is called Mode 1 of the test cycle. Similarly, the other two 
modes of the test cycle are set, and the data is acquired.  
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The intake air is carefully maintained at optimal atmospheric conditions (25°C and 45% relative humidity) by the 
Conditioned Air Handling Unit (CAHU). It then passes through an air filter, which acts as a barrier between the ambient 
air - laden with particulate matter - and the sensitive interior of the engine. Subsequently, the air enters the intake 
manifold, where it interfaces with the fuel injected at a pressure of 2 bar in the combustion chamber. The HCNG blends 
were stored at a pressure of 200 bar in a cylinder cascade, and the fuel was passed through a pressure reduction unit 
before entering the engine. Throughout the test cycle, the air-fuel mixture was maintained stoichiometrically. 
Additionally, pressure and temperature sensors are strategically placed on various parts of the engine to measure the 
steady-state engine conditions.   

In this experimental study, in order to minimize the impact of cyclic fluctuations, the combustion data was collected for 
300 consecutive cycles and the average dataset was used for further analysis. We obtained in-cylinder pressure data 
using an AVL make piezoelectric pressure sensor (GH12D), which comprised a pressure transducer capable of measuring 
dynamic pressures up to 250 bar, a charged amplifier, and a measurement cable. The charge produced by the pressure 
transducer was converted into a proportional voltage signal using a charged amplifier, and this signal was then captured 
by the high-speed combustion data acquisition (HSDA) system. 

In this experimental study, the effects of cyclic variations during combustion were reduced by collecting combustion 
data over 300 consecutive cycles and then using the average data for further analysis. For measuring in-cylinder 
pressure, an AVL piezoelectric pressure sensor (model GH12D) was used, which included a pressure transducer capable 
of recording dynamic pressures up to 250 bar, along with a charge amplifier and a measurement cable. The charge 
generated by the pressure transducer was transformed into a corresponding voltage signal through the charge amplifier, 
and this signal was subsequently recorded by the high-speed combustion data acquisition (HSDA) system. 

The crankshaft was acquired with a crank angle encoder that serves as a reference for measuring the crank angle and is 
utilized for analyzing engine combustion. The collected data is plotted against the crank angle to calculate various 
thermodynamic parameters. A schematic of the experimental setup with the data acquisition system is given in Figure 
2. The HSDA data was acquired from a variety of sensors, and the combustion curves, including heat release rate, 
cumulative heat release rate, and combustion temperature, were derived from the in-cylinder pressure curve. 
Furthermore, parameters such as the start and end of combustion, combustion duration, and IMEP were also 
determined for both CNG and HCNG blends. 

 
 Experimental Setup with HSDA system for Combustion analysis. 

The calculation model was developed in the AVL Concerto software, which is used to read the acquired data files from 
the AVL system and represent the data graphically as a function of crank angle. The engine was initially tested on 
compressed natural gas (CNG), and then, gradually, various blends of hydrogen-enriched compressed natural gas 
(HCNG) were tested using the same engine calibration as CNG. This was intentionally carried out to evaluate the 
performance and emission differences when using different fuels with the same engine calibration in order to determine 
the calibration adjustments needed to optimize the engine parameters for the fuel blend. Engine performance, 
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combustion, and emission data for CNG and HCNG blends containing 18% Hydrogen (18HCNG) and 25% hydrogen 
(25HCNG) were collected. Figure 3 shows the comparison of the combustion data collected for CNG and 18HCNG. 

From Figures 3 and 4, it can be inferred that the addition of hydrogen reduces the combustion duration by almost 10% 
from CNG to 18HCNG. This is because the Mass Burnt Fraction of 90% (MBF90) is achieved faster, owing to the higher 
flame speed of hydrogen than that of CNG, which is 1.7 m/s for Hydrogen as compared to 0.4 m/s for CNG fuel. Similarly, 
the Heat Release Rate (HRR) for 18HCNG is higher than the HRR for CNG. This is due to the higher calorific value of 
Hydrogen (150 MJ/kg) as compared to CNG (48.35 MJ/kg). This means that the Hydrogen molecule releases more energy 
than the Methane (CH4) molecule when it is ignited. 

 
 Pressure vs Crank angle for CNG vs 18HCNG. 

 
 Heat Release Rate curves for CNG and 18HCNG. 

The maximum cylinder pressure of 18HCNG is higher than that of CNG due to spontaneous combustion and the rapid 
rise of cylinder pressure because of the spontaneous combustion of Hydrogen in the 18HCNG fuel blend. This is also 
reflected in the crank angle duration at which the maximum pressure is attained (APmax). The APmax for 18HCNG 
achieved is 11.40°CA, which is around 10.23% faster than that of CNG fuel. 

The peak temperature for 18HCNG (Figure 5) has decreased as the engine operates in a lean condition. This results in a 
lower peak combustion temperature due to the deviation from the stoichiometric air/fuel ratio. Consequently, lean 
combustion leads to lower peak temperatures, providing an advantage for reducing NOx emissions in 18HCNG. Overall, 
blending CNG with Hydrogen has shown improvement in combustion characteristics. 
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 Temperature curves for CNG and 18HCNG. 

To gather emissions data, we used a raw exhaust gas emission analyzer (AVL AMA i60) to measure NO, HC, CO, CO2, 
and O2 concentrations in the engine exhaust. The sample comparison of emissions (in ppm) for the CNG and 18HCNG 
blend is illustrated in Figure 6. 

 

 Comparison of NOx, HC, CO and CO2 emissions for CNG and 18HCNG. 

The NOx emissions for 18HCNG have increased across all 3 modes compared to CNG due to higher combustion 
temperatures. However, HC emissions have decreased by 85%, and CO emissions have been reduced by 56% for 
18HCNG. This reduction is attributed to the lower H/C ratio in the HCNG blend, which leads to more complete 
combustion at higher temperatures, thereby lowering CO and HC emissions. 

Although the temperature profile (Figure 5) indicates a marginal reduction in peak combustion temperature for the 18% 
HCNG blend compared to pure CNG, primarily due to leaner operation and deviation from the stoichiometric air–fuel 
ratio. The NOx emissions were observed to increase across all three modes of the CPCB emission cycle as per ISO 8178. 
This apparent contradiction is explained by the complex interplay between flame speed, combustion phasing, and 
localized thermal behaviour introduced by hydrogen enrichment. The presence of hydrogen enhances flame 
propagation and reduces ignition delay, resulting in earlier combustion phasing and a sharper rise in temperature closer 

(a) (b) 

(c) (d) 
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to top dead centre (TDC). This shift increases the residence time of combustion gases within the critical temperature 
window for NOx formation, even if the absolute peak temperature is slightly lower. Moreover, at intermediate and part-
load conditions during the 3 modes, the combined effects of moderate equivalence ratios and faster combustion lead 
to elevated local temperatures and prolonged high-temperature residence, both of which are conducive to increased 
thermal NOx production. Hence, the rise in NOx emissions with HCNG operation is not solely governed by global peak 
temperature but by the broader thermodynamic and kinetic changes induced across the engine cycle. 

Machine Learning 

Machine learning (ML) plays a significant role in establishing connections between engine responses and control 
variables, thereby facilitating global search optimization based on specific merit functions and enabling easier sensitivity 
analysis. Thanks to these advantages, the ML algorithm has been successfully and widely used in predicting various 
engine-related parameters, including power, pressure, phasing, exhaust gas temperature, engine vibrations, emissions, 
efficiency, and fuel composition effects. 

Here is a comparison of the performance and combustion data of CNG and lower blends of HCNG 18% and HCNG 25% 
to predict the performance and combustion characteristics of the higher blend of HCNG 30%. After that, these 
predictions were compared with experimental data. Two models for the purpose of this work were developed: one for 
performance characteristics and the other for combustion characteristics. As for the regression algorithm, it was chosen 
after a detailed analysis of different factors and previous models implemented in prediction in the literature review. 

Choosing a Machine Learning Model 

In the research literature on predicting engine performance using machine learning techniques, the most commonly 
used algorithms were Random Forest and Artificial Neural Network (ANN) (Yang, Yan, Sijia, et al., 2022), (Papaioannou 
et al., 2021), (Sonawane et al., 2023), (Mehra et al., 2018), (Airamadan et al., 2022), (Yang, Yan, Sun, et al., 2022), (Shah 
et al., 2019). Some papers also mentioned the use of a Support Vector Machine (SVM) for predicting BSFC and NOx 
emissions (Hao et al., 2020). 

The Random Forest algorithm was chosen for developing the model over Artificial Neural Networks (ANN) because of 
the following points: 

1. The Random Forest (RF) algorithm is a more cost-effective option that doesn't necessitate a GPU for training and 
can achieve satisfactory results with fewer data points. It offers an alternative interpretation of decision trees while 
delivering improved performance. In contrast, Neural Networks typically require a significantly larger dataset than 
what an average user may possess to function effectively. 

2. The RF algorithm has one more advantage in that it applies a greedy algorithm during training, as described in the 
Methodology section. This helps Random Forests to determine the important parameters for the model as there is 
no need for other independent algorithms to assess the parameter importance (Papaioannou et al., 2021). A neural 
network can increase the complexity of the model to improve performance, but at the expense of the 
interpretability of features. If comprehension of the variables is crucial, then some performance may have to be 
sacrificed for the model to clearly display how each variable impacts the prediction. 
 

The Random Forest is an ensemble approach used in machine learning for regression as well as classification tasks. In 
this approach, multiple decision trees are used and a technique known as Bootstrap and Aggregation or bagging is used. 
The basic concept is that instead of using one decision tree to get the result, the final result is obtained by combining 
the results of multiple decision trees. The base learners in Random Forest are multiple decision trees. The sample 
datasets for each model are created by randomly sampling the rows and features of the dataset and this is referred to 
as Bootstrap. 

The Random Forest algorithm consists of a collection of decision trees and can be applied to classification as well as 
regression tasks. The final output is determined by averaging the results from all the individual decision trees. In this 
model, the variables being predicted include engine torque, fuel flow rate, and exhaust gas temperature. This method 
effectively captures complex relationships among the variables for accurate predictions. It is widely used in various 
engineering applications for performance analysis. 
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The decision tree partitions the parameter space into branches by applying a threshold that changes with each split, as 
represented in the first line of each box in Figure 7. The parameters and thresholds for these splits are chosen based on 
a specific performance criterion, such as squared error, which is also depicted in Figure 7. The tree continues to split 
until it reaches a terminal node (leaf), where a single prediction is made, as shown by the value in Figure 7. Furthermore, 
the splitting process and the number of terminal nodes can be managed through various hyperparameters, which are 
discussed in greater detail in subsequent sections of this study. 

 

 A Random Forest Decision tree for Performance data prediction. 

Once the tree is fully developed (meaning the model has been trained), each partition will represent a specific subset 
of the target variable, and the model’s output for that partition will be the average of this subset. A larger tree creates 
more partitions, which can enhance the model's accuracy and detail. Random Forests compute the average output of 
the various decision trees through a technique called bagging. For each individual tree, sampling is often done using 
bootstrapping, which involves sampling with replacement. This method results in trees that are inherently diverse. 

In the decision trees, every sample parameter and data point is considered when forming each node. This can lead to 
overfitting, where the model becomes overly fitted to the training data and fails to generalize well to new data, 
especially as the size of the dataset increases. A slight change in the data can produce a completely different tree 
structure. This is where Random Forests become advantageous, as they help reduce the risk of overfitting by averaging 
the results of multiple trees. 

Machine Learning Results 

This section presents the machine learning results for performance and combustion parameters for the multi-cylinder 
engine with HCNG blends investigated in the present work. 

Random Forest Modelling for Engine Performance Parameters 

A Random Forest regression model was trained on the experimental data of 18HCNG and 25HCNG, which included the 
input and output parameters as mentioned in Error! Reference source not found.. 

Table 4 Input and Output parameters for the Performance RF model. 

Input Parameters Output Parameters 

Fuel intrinsic property 
(Calorific value/ Laminar Burning speed) 

Exhaust Temperature 

Torque BMEP 
Fuel flow rate BSFC 
Air/Fuel ratio  

The experimental data available for the parameters in question included only 10 data points for each blend. Given that 
there are three blends (with 18% and 25% used for training and 30% for validation), this results in a total of just 30 data 
points for training, which is inadequate for effectively training a machine learning model. To address this limitation, the 
practice of synthetic data generation is commonly employed across various industries. This approach helps create more 
robust models and fosters improvements in performance. In the context of the big data era, synthetic data generation 
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holds significant promise, particularly for supporting advancements in the Internet of Things (IoT). It plays a crucial role 
in realizing concepts such as digital twins and cyber-physical systems on a broader scale. 

The use of synthetic data is picking up momentum in engineering when it comes to modelling systems that are both 
complex and nonlinear. Collecting large amounts of real-world data for such tasks can sometimes be too expensive or 
not possible. Sonawane et al. showed how adding synthetic data through nonlinear interpolation improved predictions 
in gasoline-ethanol engine performance using Random Forest models (Sonawane et al., 2023). Ghareeb et al. took a 
similar approach with vehicle seat thermal dynamics, showing its real-world value in managing automotive heat systems 
(Ghareeb et al., 2024). The effectiveness of these techniques has been demonstrated in the simulation of electronic 
package behaviors (Lee & Kwon, 2025), while Kou et al. focused on diagnosing faults in mechanical components (Kou et 
al., 2019). Hou et al. explored its role in predicting electric vehicle battery wear and tear (Hou et al., 2021). Studies 
confirm that these techniques keep the original dataset’s nonlinear patterns intact and help models perform better with 
ensemble methods like Random Forest (Cheng et al., 2024; Kim et al., 2024). Altogether, these examples show how 
nonlinear interpolation-based synthetic data can be a reliable and useful tool in engineering-related machine learning 
studies.  

A non-linear interpolation method was implemented to create additional synthetic data, resulting in an expansion of 
the 30 experimental runs to 500 data points. This enhancement aimed to improve the precision of model training and 
the accuracy of predictions while simultaneously reducing overall testing costs and time. 

  

 Synthetic data generation from Experimental data points for Exhaust Temperature. 

The data includes Experimental and Synthetic data for 18% and 25% HCNG blends for the output parameter of Exhaust 
temperature, as shown in Figure 8. Similarly, synthetic data for BMEP and BSFC were generated. The model was trained 
on 80% of the data and tested on 20% of the data. A regression model was created using Random Forest regression on 
the experimental and synthetic data for 18HCNG and 25HCNG blends. The RF model summary for engine performance 
parameters is given in Table 5. 

Table 5 RF Model Summary for Engine Performance Parameters 

 Exhaust Temperature BSFC BMEP 

R2 95.88% 94.26% 92.99% 

RMSE 10.00 35.64 0.67 

MAPE 1.34% 9.18% 19.26% 

To ensure that the synthetic data generated via non-linear interpolation accurately reflects the distributional 
characteristics of the original experimental dataset, a statistical validation procedure was conducted. Specifically, 
goodness-of-fit tests were applied to all input features to evaluate the similarity between the real and synthetic data 
distributions. For numerical features, the two-sample Kolmogorov–Smirnov (K–S) test was employed, while Pearson’s 
chi-squared test (χ²) was reserved for categorical variables, where applicable. The K–S test checks how the empirical 
cumulative distribution functions of the two samples compare. In this case, it examines 30 experimental points against 
500 synthetic ones to spot any major statistical differences. Researchers used Python (v3.10) with the 
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‘scipy.stats.ks_2samp’ function to analyze the data, setting a significance level (α) of 0.05. The test showed no major 
statistical deviations between the experimental and synthetic data distributions across all tested features. This finding 
verifies that the interpolated dataset aligns well with the original data structure. Because of this, the synthetic dataset 
represents the real data. This reduces the chance of bias, underfitting, or overfitting when training models. Figure 9 
shows a statistical validation of the synthetic BSFC data distribution as a sample. 

The Kernel Density Estimation (KDE) plot compares the distribution of BSFC between experimental and synthetic 
datasets. The curves are nearly overlapping, indicating high similarity. Whereas the Empirical Cumulative Distribution 
Function (ECDF) comparison, with a K–S test p-value, displays that the p-value is well above 0.05, there is no significant 
difference between the distributions, confirming that the synthetic data reliably mimics the experimental data. 

 

 Statistical Validation of Synthetic Data Distribution Using KDE and ECDF for BSFC. 

Evaluating Model Robustness: Performance Assessment in the Absence of Synthetic Data 

The Random Forest model demonstrated high predictive accuracy when trained on the non-linear interpolated dataset 

comprising 500 samples. Performance metrics such as R² scores exceeding 92%, low RMSE, and MAPE values across 

engine performance parameters (Exhaust Temperature, BSFC, BMEP) indicate that the model captured the underlying 

trends and relationships effectively within the expanded data space. However, to assess the true generalizability of the 

model, a comparative experiment was conducted by training and testing the Random Forest model using only the 

original 30 experimental data points. 

Table 6 RF model summary for experimental data points without synthetic data.  

 Exhaust Temperature BSFC BMEP 

R2 82.6% 79.4% 72.3% 
RMSE 17.8 54.6 1.04 
MAPE 6.45% 16.88% 28.74% 

Table 6 shows the RF model output for experimental datapoints without the synthetic data. As expected, the model's 
performance declined noticeably under the constrained data regime compared to its performance with the synthetically 
augmented data regime (Table 5). The R² values dropped to 82.6% for Exhaust Temperature, 79.4% for BSFC, and 72.3% 
for BMEP, representing a 10–20% reduction in explanatory power. Similarly, the RMSE values increased to 17.8, 54.6, 
and 1.04, respectively, while MAPE rose sharply to 6.45%, 16.88%, and 28.74%. These results reflect the onset of 
overfitting, where the model, limited by the small dataset, tends to memorize localized data patterns rather than 
learning generalizable trends. The steep rise in MAPE, particularly for BMEP, also indicates increased sensitivity to input 
noise and poor extrapolation ability. This performance gap underscores the importance of synthetic data in 
compensating for experimental limitations and justifies the use of methods like non-linear interpolation to enhance 
training diversity and improve model robustness. 

Effect of Interpolated Synthetic Data on Model Generalization and Overfitting 

To investigate the influence of data volume and distribution on model performance, the Random Forest regression 
model was trained separately on two datasets: one comprising only the original experimental data (30 samples), and 
the other augmented to 500 samples using a non-linear interpolation method. When trained solely on experimental 
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data, the model exhibited clear signs of overfitting, as evidenced by high training R² values (0.98 for BMEP, 0.97 for 
exhaust temperature, and 0.94 for BSFC), but significantly lower test R² values (0.77, 0.68, and 0.27, respectively) as 
shown in Figure 10. The substantial drop in performance, especially for BSFC, indicates that the model learned localized 
patterns specific to the training set but failed to generalize beyond them, typical of high-variance behaviour associated 
with small datasets. 

 

 Comparative R² Scores for RF Model Trained on Experimental vs Synthetic Datasets. 

In contrast, the model trained on the interpolation-augmented dataset showed marked improvement in generalization, 
with test R² values rising to 0.99 for BMEP, 0.94 for exhaust temperature, and 0.79 for BSFC. The relatively small 
difference between training and testing performance suggests that interpolated synthetic data helped to smooth 
transitions in the feature space and reinforce functional relationships between input variables. However, it is important 
to recognize that non-linear interpolation introduces deterministic data that may lack the natural noise and variability 
of experimental conditions. This can result in subtle biases, especially in parameters like BSFC, where real-world 
fluctuations are more pronounced. The slight reduction in generalization accuracy for BSFC (compared to BMEP) likely 
reflects this limitation. Therefore, while non-linear interpolation is a practical and computationally efficient approach 
to expand training datasets, care must be taken to ensure that interpolated points do not misrepresent complex real-
world behaviours, particularly in sensitive combustion metrics. 

Random Forest Modelling for Combustion Parameters 

The HSDA data was generated for three different modes of a single-speed multi-cylinder engine (at 100%, 75%, and 50% 
of the rated torque) for CNG, 18HCNG, and 25HCNG. The input and output parameters of the model are listed in Tbale 
7. 

Table 7 Input and Output parameters for Combustion RF model. 

Input Parameters Output Parameters 

Blend (% H2) Maximum Combustion Pressure 
Fuel Intrinsic Property (Calorific value/ Laminar Burning speed) IMEP 

Torque Combustion duration 

The HSDA data was used to obtain various combustion characteristics over 300 cycles. Due to the raw nature of the 
data, 50 cycles of data were selected for each mode, as the variation in characteristics was not very uniform over the 
entire 300 cycles. Specifically, data for 18% and 25% HCNG blends at 100%, 75%, and 50% of the rated load was chosen 
to create a machine-learning model using the Random Forest Regression method mentioned in the previous section. 
An 80:20 train-test split was used as it was found to produce better results based on trial-and-error observations. 

A regression model was created using Random Forest regression on the experimental data for 18HCNG and 25HCNG 
blends. The model summary for engine combustion parameters is given in Table 8. 
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Table 8 RF model summary for engine combustion parameters. 

 Pmax IMEP Comb_dur 

R2 95.17% 99.82% 92.99% 
RMSE 2.17 0.06 0.39 
MAPE 3.99% 0.73% 1.41% 

The Random Forest model shows strong performance across all three metrics for Pmax, IMEP, and Combustion Duration 
(Comb_dur), with IMEP having the best fit and smallest error margins, indicating that the model is highly effective, 
especially in predicting IMEP. The model has slightly higher errors for combustion duration as compared to IMEP. 

From the model summary data shown in Table 5 and Table 8 it is evident that the model has a higher error in predicting 
BSFC, BMEP and Combustion Duration. In order to have the predictions for the 30HCNG fuel blend, the model needs to 
be more accurate. Hence, it was decided to optimize the Random Forest Regression model. 

Optimization of Regression Model 

Random Forest (RF) involves several hyperparameters that dictate the structure of each individual tree, as given in Table 
9. These hyperparameters include the minimum node size required for a node to be split, the number of trees in the 
forest, and the degree of randomness in the model. Additionally, Random Forest considers the number of variables 
deemed as candidate splitting variables at each split, as well as the sampling scheme used to generate the datasets on 
which the trees are built. 

Table 9 Hyperparameters in Random Forest Regression. 

Hyperparameter Description Typical Default Values 

mtry Count of candidate variables selected for each split √p, p/3 for regression 
samp_size Count of observations being drawn from each tree n 

replace Observations being drawn with or without replacement TRUE (with replacement) 

min_node_size 
The terminal node containing a minimum number of 

observations 
1 for classification, 5 for regression 

max_depth Each decision tree’s maximum depth  
n_estimators Number of trees contained in the forest 500, 100 

split_rule Splitting criteria of the nodes Gini impurity, p-value, random 

min_samples_split 
The minimum number of samples required to split an internal 

node 
1 

In machine learning, tuning involves finding the best hyperparameters for a given dataset and learning algorithms. In 
supervised learning, such as regression and classification, optimality can be defined in terms of different performance 
measures like error rate or AUC, as well as the runtime, which can be influenced by hyperparameters in certain cases. 

To optimize the performance of the machine learning model, GridSearchCV was implemented, which applies the Grid 
Search technique to find the best hyperparameters. With GridSearchCV, a range of values is defined for the selected 
parameters, and then every combination of these parameters is iterated thoroughly to identify the combination that 
improves the chosen cost function the most. 

Table 10 displays the optimal hyperparameters found using GridSearchCV for predicting the outputs of the engine 
performance and combustion parameters. These hyperparameters include the number of estimators, maximum depth, 
and the minimum number of samples needed to split an internal node. Once these best hyperparameters are known, 
they are used to optimize the Random Forest regression model. This helps to lower the errors and enhance the accuracy 
of the model. 

Table 10 Selection of the best hyperparameters for all the RF model outputs. 

Hyper 
parameters 

Values of parameters 
given in the grid 

Exhaust 
Temp 

BMEP BSFC Pmax IMEP 
Combustion 

Duration 

max_depth 10, 20, 30, 40, 50 30 20 50 30 10 10 
min_samples_split 5, 10, 15, 20 20 20 10 20 5 15 

n_estimators 
100, 200, 300, 400, 

500 
100 300 100 100 100 200 
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The Random Forest regression model was then run to predict engine performance parameters for 30HCNG data. The 
model summary is given in Table 11. 

Table 11 RF Model Summary for Engine Performance Parameters after Optimization for 30HCNG Blend. 

 Exhaust Temperature BSFC BMEP 

R2 96.77% 97.69% 98.63% 

RMSE 7.95 12.29 0.26 

MAPE 1.27% 3.93% 5.43% 

The optimized Random Forest model shows strong performance across all parameters, with particularly high precision 
for BMEP in terms of R² and RMSE, with very accurate predictions with low percentage errors for exhaust temperature. 
The optimized model has improved the MAPE for BMEP and BSFC from 19.26% to 5.43% and from 9.18% to 3.93%, 
respectively. This indicates the model is a highly accurate fit but with a slightly higher percentage error (>5%), possibly 
due to the nature of BMEP's scale or the specifics of the data used. 

The hyperparameters for the combustion data prediction model were optimized as per Table 8. Then, the model was 
run to predict engine combustion parameters for 30HCNG data. The model summary is given Table 12. 

Table 12 RF Model Summary for Engine Combustion Parameters after Optimization for 30HCNG Blend. 

 Pmax IMEP Comb_dur 

R2 96.24% 99.85% 95.50% 
RMSE 1.93 0.06 0.30 
MAPE 2.48% 0.64% 1.11% 

The optimized Random Forest model shows excellent performance across all measured parameters, with good 
predictive power and moderate errors relative to the scale for maximum combustion pressure (Pmax). The model has 
exceptionally high accuracy with very low errors both in absolute and percentage terms for IMEP predictions for 
30HCNG. Whereas, for combustion duration, the model gives a strong performance with slightly higher errors compared 
to IMEP but is still very accurate. The optimized model has improved the R2 for Combustion Duration from 92.99% to 
95.50%, which has a more than 95% confidence level to predict the combustion duration for the 30HCNG blend. 

Discussions 

The outputs obtained from the optimized Random Forest regression model were validated with experimental data using 
a 30% HCNG blend. The RF model outputs for the engine performance and combustion parameters are discussed against 
actual experimental values for the 30HCNG blend in the subsequent sections. 

Assessing the Predictive Strength of Random Forest Relative to Other Machine Learning 
Algorithms 

In the literature, various machine learning models have been employed to predict engine performance and combustion 
characteristics, including Artificial Neural Networks (ANN), Support Vector Machines (SVM), Gradient Boosting methods, 
and Random Forests (RF). ANN models, as demonstrated by Mehra et al. and Yang et al., are capable of modelling 
complex nonlinearities but suffer from interpretability issues and require extensive hyperparameter tuning and large 
datasets for stable performance (Mehra et al., 2018; Yang, Yan, Sun, et al., 2022). SVMs, utilized by Hao et al., offer good 
generalization in smaller datasets but are highly sensitive to kernel selection and lack built-in mechanisms to evaluate 
feature importance (Hou et al., 2021). Gradient Boosting algorithms such as CatBoost and XGBoost, explored by 
Airamadan et al., provide slightly improved accuracy over RF in some cases but come with higher computational costs 
and are more susceptible to overfitting, especially in noisy or synthetic datasets (Airamadan et al., 2022). In contrast, 
the Random Forest method used in this study provides a strong trade-off between accuracy, interpretability, robustness 
to noise, and minimal tuning. Particularly in data-constrained environments augmented with generative methods like 
CTGAN, RF shows consistent generalization while preserving transparency in decision-making through feature 
importance analysis. The comparative assessment of the ML algorithms based on the above-mentioned literature survey 
for engine performance modelling is given in Table 13. 
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Table 13 Comparative Assessment of Machine Learning Algorithms for Engine Performance Modelling. 

Model 
Handling of 
Nonlinearity 

Performance on 
Small Datasets 

Feature 
Importance 

Interpretation 

Sensitivity to 
Synthetic Data 

Quality 

Training 
Complexity 

Overfitting 
Risk 

Random  
Forest (RF) 

Excellent High 
Yes (Built-in via 

feature 
importance) 

Low to 
Moderate 

Low Low 

Artificial Neural 
Network (ANN) 

Excellent 
Poor without 
augmentation 

No (Black box) High High High 

Support Vector 
Machine (SVM) 

Good Moderate No Moderate Moderate Moderate 

Gradient 
Boosting (e.g., 

CatBoost, 
XGBoost) 

Excellent Moderate 
Partial (with SHAP 

tools) 
High High High 

TOPSIS/ MCDM 
Methods 

Not applicable Not applicable 
Yes (Ranking-

based) 
Not applicable Very Low 

Not 
applicable 

Engine Performance Data Analysis 

To assess the predictive capabilities of the Random Forest regression model, a comparison between actual and 
predicted values was carried out for the 30% HCNG blend under the ISO 8178 D2 3-mode cycle. As depicted in Figure 
11, the model demonstrates a close agreement between the actual and predicted exhaust temperatures across the 
torque range, highlighting its strong predictive capability in capturing thermal behavior trends. 

 

 Exhaust Temperature Actual vs Predicted values. 

Similarly, Figure 12 illustrates the brake-specific fuel consumption (BSFC), where the predicted values closely follow the 
actual curve, particularly in the high-torque range, underscoring the model’s ability to learn non-linear fuel efficiency 
characteristics. The BSFC prediction curve exhibits noticeable deviation from the actual experimental data at lower 
torque values, particularly below 100 Nm. This mismatch suggests that the Random Forest model, despite its overall 
high predictive accuracy, struggles to generalize accurately in the low-torque regime. This behavior is primarily 
attributed to error bias introduced during model training, especially when the data distribution in the low-torque region 
is sparse or exhibits high variability. 

Hence, the model’s performance degradation at low torques in BSFC prediction can be directly linked to training data 
imbalance and inherent limitations in learning finer combustion dynamics in low-load conditions. This underscores the 
necessity of ensuring a more uniformly distributed and representative training dataset, potentially through synthetic 
data augmentation, to improve model generalization across the full torque range. 
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 BSFC Actual vs Predicted values 

The comparison for Brake Mean Effective Pressure (BMEP), shown in Figure 13, further supports the model’s robustness, 
as the predicted BMEP trajectory is nearly indistinguishable from the actual measurements. Collectively, these three 
figures confirm the high fidelity of the Random Forest model in replicating engine performance characteristics based on 
a 30HCNG blend. 

 

 BMEP Actual vs Predicted values. 

From the graphs shown above, the Random Forest regression model is highly precise in predicting the engine 
performance parameters for the 30HCNG blend. The engine was tested with 30% HCNG as per the ISO 8178, D2 3-mode 
test cycle. The comparative data w.r.t various HCNG fuel blends and CNG is discussed based on engine performance 
parameters like brake thermal efficiency (BTE), BSFC, and BMEP. Beyond the model predictions, engine performance 
across varying HCNG blend ratios is presented in the subsequent section.  

Figure 14 shows the BTE at 3 modes for the HCNG blends. The BTE for 30HCNG is slightly lower as compared to the 
25HCNG blend. When hydrogen is added to compressed natural gas, and the engine speed is increased, the brake 
thermal efficiency (BTE) typically decreases. In the case of our single-speed engine, where the engine speed remains 
constant, the increase in calorific value outweighs the decrease in mass flow rate. As a result, for the same torque, the 
brake thermal efficiency decreases as the percentage of hydrogen in the blend increases. The BTE remains relatively 
stable in Mode 1 for all blends, but slightly decreases with increasing hydrogen concentration, particularly for 30HCNG 
in Modes 2 and 3. This reduction is attributed to the combined effects of fixed engine speed and changes in mass flow 
rate. Although hydrogen increases the calorific value of the blend, the overall energy conversion efficiency slightly 
declines due to alterations in combustion phasing at higher hydrogen percentages. 

Figure 15 shows the BSFC of different HCNG blends at the 3 modes. The BSFC shows a decreasing trend with an increase 
in the hydrogen content. This is attributed to the higher energy content of the fuel blend as a result of the addition of 
hydrogen, which has a calorific value more than twice that of CNG. The higher hydrogen content contributes to 
improved fuel efficiency and performance, making HCNG blends an interesting area for further research and 
development in the field of alternative fuels. The inverse relation between hydrogen enrichment and BSFC underscores 
the potential of HCNG in optimizing fuel economy, especially in steady-state generator operations. 
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 Mode-wise BTE (Brake Thermal Efficiency) for different HCNG blends. 

 

 Mode-wise BSFC for different HCNG blends. 

An analysis was conducted on the temperature trend of the exhaust gas after the manifold across three different modes. 
Figure 16 shows the exhaust temperature trend for various HCNG blends at 3 modes. It shows that the addition of 
hydrogen in the blend resulted in the highest exhaust gas temperature for 18HCNG. As the blend was transitioned to 
25HCNG, the temperature of the exhaust gas began to decrease, reaching its lowest point for the 30HCNG blend.  

 

 Mode-wise Exhaust temperatures for different HCNG blends. 

When hydrogen is added to natural gas, the resulting increase in flame temperature leads to higher exhaust gas 
temperatures under both stoichiometric and fuel-lean operating conditions. This rise in flame temperatures enables 
more complete combustion. As the percentage of hydrogen in the mixture continues to increase, the exhaust 
temperature initially rises and then decreases due to spontaneous combustion. 

Together, these observations affirm that the Random Forest model effectively captures engine performance trends for 
HCNG blends, while the comparative analysis of BTE, BSFC, and exhaust temperature substantiates the potential 
benefits and limitations of increasing hydrogen proportions in dual-fuel strategies. 



706              Prasanna S Sutar  et al. 

 

   

 

Engine Combustion Data Analysis 

The Random Forest regression model was validated using 30% HCNG blend data, and various evaluation measures were 
used to assess its accuracy and predictability. The average of predicted and actual values over 50 combustion cycles for 
a specific mode was compared, as the individual data did not follow a specific trend. The results of the comparison for 
the predicted and actual values of 30% HCNG blend for Pmax, are shown in Figure 17, whereas IMEP and Combustion 
Duration at the 3 modes are represented in Figure 18. 

 

 Maximum Pressure at 3 modes: Predicted vs Actual. 

  

 IMEP and Combustion at 3 modes: Predicted vs Actual. 

The Random Forest regression model predicts Maximum pressure, IMEP, and Combustion duration with an error of less 
than 3%. This small error is due to the data being acquired over CNG calibration, and there is also cyclic variation in air-
fuel ratio as the engine attempts to correct the fuelling based on a closed-loop strategy. 

As stated earlier, the engine was tested with 30% HCNG as per the ISO 8178, D2 3-mode test cycle. The comparative 
data w.r.t various HCNG fuel blends is discussed based on engine combustion parameters like maximum combustion 
pressure (Pmax), IMEP, and Combustion duration. 

The combustion data for mode 1 is shown in Figure 19. For mode 1, the torque is maximum torque, and hence, there is 
very little difference in the peak combustion pressure (Pmax) values and therefore, the IMEP is also similar. The 
maximum combustion temperature is lower for higher hydrogen blends as the combustion occurs spontaneously within 
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less time as compared to lower hydrogen blends. The cumulative heat release rate (Int1) is also lower for 30HCNG as 
compared to 18HCNG.  

The combustion data for mode 2 is shown in Figure 20. The experimental findings indicate a 4% increase in combustion 
pressure and temperature when the hydrogen blend increases from 18% to 30%. This rise in pressure and temperature 
is primarily due to the accelerated burning rate within the fuel-air mixture, along with a decrease in the mixture's heat 
capacity. Also, the occurrence of the peak pressure (APmax) is shifted towards the TDC side (near 0 crank angle) from 

11.4CA to 10.6CA. This shows that the combustion duration is reduced by 7.5% as the hydrogen blend is increased 
from 18% to 30% at mode 2. 

 

 Combustion Characteristics for various HCNG blends at Mode 1. 

 

 Combustion Characteristics for various HCNG blends at Mode 2. 

The combustion data for mode 3 is shown in Figure 21. The experimental findings indicate around 5% increase in 
combustion pressure and temperature when the hydrogen blend increases from 18% to 30%. Also, the occurrence of 

the peak pressure (APmax) is shifted towards the TDC side (near 0 crank angle) from 11.4CA to 9.9CA. This shows that 
the combustion duration is reduced by 15% as the hydrogen blend increases from 18% to 30%. This observation suggests 
a correlation between the hydrogen content and the timing of maximum heat release, indicating that the combustion 
process accelerates with increased hydrogen content in the blend. This effect can be attributed to the high flame speed 
of hydrogen, which enhances the combustion process and contributes to shorter combustion durations in the HCNG 
blends. 
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 Combustion Characteristics for various HCNG blends at Mode 3. 

Emissions Analysis 

The engine underwent initial testing using natural gas and was calibrated accordingly. Subsequently, the same 
calibration was utilised for testing HCNG blends with varying hydrogen concentrations of 18%, 25%, and 30%. The 
emissions obtained for HCNG blends cannot be compared directly for raw emission calculation because of the different 
exhaust gas densities. Bandyopadhyay D. et al. described that the ratio between densities of gas components and 
exhaust gas, called μgas, is different for different fuel blends and is an exclusive value that changes as per the fuel 
composition (Bandyopadhyay et al., 2025). Here, the authors normalize or correct emissions across different HCNG 
blends using a method based on unit mass of fuel burned, leveraging exhaust gas density (μgas) and exhaust volume 
flow rates. This approach allows for fair and consistent comparison of emissions across blends with different hydrogen 
fractions. The raw emission concentrations (in ppm or %) are converted into mass flow rates (e.g., g/s) by multiplying 
with the exhaust gas density (μgas) and the exhaust flow rate. This avoids errors that arise from comparing just 
concentration values when flow rates differ between blends. Accordingly, the emission results were gathered for each 
blend across three operational modes, and the comparative analysis is visually depicted through graphs showcasing the 
emission values in Figure 22.  

The use of an 18HCNG blend results in a notable decrease in NOx emissions, with this reduction becoming more 
pronounced as the proportion of hydrogen in the blend increases. This phenomenon is attributed to the decrease in 
residual time of the combustion mixture in the combustion chamber as the hydrogen ratio rises, resulting in a 
subsequent decrease in chemical NOx. Additionally, there is a substantial reduction of 62% in HC emissions and 85% in 
CO emissions when utilizing 18HCNG compared to CNG. Moreover, these emissions show a further decline for 25HCNG 
and 30HCNG. This significant reduction is linked to the increase in combustion temperature, which promotes more 
thorough combustion. 
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 Variations in NOx, HC, CO and CO2 emissions for 18HCNG, 25HCNG and 30HCNG. 

Conclusion and Future Scope 

This study utilized a Random Forests algorithm to accurately predict performance parameters like BMEP, BSFC, Exhaust 
temperature, and combustion parameters such as maximum pressure, IMEP, and combustion duration for lower blends 
(18% and 25%) of HCNG on a Genset engine across various operating conditions.  

To improve the prediction accuracy, the ‘GridSearchCV’ was used to test the performance of different combinations of 
parameters to determine the best model hyperparameters and the optimal combination was selected. Additionally, 
highly correlated parameters were eliminated prior to model training to enhance the performance of the permutation 
importance algorithm.  

The optimized and trained model showed impressive accuracy across all target variables. Additionally, when validated 
with an independent dataset that was not part of the training process, the model performed exceptionally well even for 
a higher fuel blend. The prediction accuracy for engine performance parameters, especially for BMEP, the prediction 
accuracy improved by 6% to 98.63%. Also, for engine combustion parameters, the combustion duration prediction 
accuracy improved by 3% to 95.50%. Thus, improving the Mean Absolute Percentage Error (MAPE).  

This outcome is notable as it indicates that a single model was able to accurately predict all three target variables. Such 
performance suggests that the model is not only robust but also capable of generalizing well to new data, which is a 
crucial aspect of effective machine-learning applications. 

In the case of single-speed engines, the increased energy density of the fuel with increasing hydrogen content is more 
significant than the decrease in the mass flow rate of the fuel. This is because as the percentage of hydrogen increases 
in CNG, BTE is decreasing. There is also a very large decrease in BSFC hence an improvement in fuel efficiency with 
increasing hydrogen blending in CNG. This is mainly because the energy density of the fuel blend increases with 
increasing hydrogen content. 

The combustion pressure and IMEP are increasing as a result of the increase in hydrogen percentage in the HCNG blend 
because hydrogen in the fuel blend burns faster. At the same time, the combustion period is also reduced for higher 
HCNG blends as compared to CNG and other lower HCNG blends. 

(a) 
(b) 

(c) 
(d) 
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The CO and NOx emissions at full loads have been reduced for higher HCNG blends as compared to CNG or lower HCNG 
blends because of the lower residence time of the air-fuel mixture in the combustion chamber which is beneficial for 
suppression of NOx emissions. As CNG is replaced by hydrogen fuel, carbon emissions are reduced. Hydrogen 
combustion occurs more rapidly compared to CNG combustion, resulting in lower CO emissions as the hydrogen 
percentage in the HCNG blend increases. 

In Machine Learning, future work may involve using an ANN model for prediction when additional experimental data is 
available. Furthermore, comparing the Random Forest model's results with non-tree-based models like artificial neural 
networks, which would require more hyperparameter tuning and validating their predictions through actual engine 
experiments, could be considered. 

More parameters like emissions of NOx, HC, and CO can be predicted by conducting several emission tests. 
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