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Abstract

This paper addresses the challenges of low tracking accuracy in the attitude and position control of quadrotor unmanned aerial
vehicles (UAVs). To overcome these issues, a nonlinear hybrid control strategy is proposed by combining adaptive sliding mode
control with Lyapunov theory. Accounting for the nonlinearities associated with the coupling among the UAV degrees of freedom,
unlike simplified control-oriented models, the proposed strategy is designed to enhance trajectory tracking performance while
improving control flexibility and robustness against external disturbances. The proposed strategy expands the validity of the control-
oriented model compared with the linear controllers. Moreover, the inherent robustness built into the paradigm of the sliding mode
controller improves the robustness against external disturbances as well as uncaptured dynamics within the modeling process. The
stability of the system is rigorously analysed using the Lyapunov stability theory, and the results confirm the stability of the proposed
controller under various conditions. Extensive simulation tests are conducted to verify the effectiveness and feasibility of the control
strategy. The simulation results demonstrate that the proposed method significantly improves tracking accuracy in both attitude and
position control, providing a robust and reliable solution for quadrotor UAVs. This hybrid approach ensures precise trajectory tracking
while maintaining stability, making it a promising technique for advanced UAV applications.
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Introduction

In recent decades, four-rotor unmanned aerial vehicles (UAVs), commonly referred to as quadcopters, have garnered
significant attention in the literature due to their low cost, vertical take-off and landing (VTOL) capabilities, and simple
design and manufacturing process compared to their fixed-wing counterparts. The aforementioned features have made
them an indispensable aerial vehicle in a wide range of applications in numerous fields. Consequently, they can be
implemented in a broad spectrum of applications, including agriculture, industry, military surveillance and
reconnaissance, commerce, search and rescue missions, and even everyday life activities. Furthermore, they perform
various tasks, including crop monitoring, fertilization, spraying, aerial terrain mapping, power line maintenance, cargo
transportation, and more (Cardenas and De Barros, 2019). In fact, the foundation for effectively accomplishing the
previously mentioned specialized tasks is the accurate trajectory tracking control system. However, the inherent
nonlinearity associated with the UAV's dynamic nature, alongside the uncertainties arising from the complexity of
capturing a precise model for an aerodynamic-structural interacting system, is a challenge. As a result, the development
of navigation systems, position estimation, flight stability, and several other control tasks is significantly affected.
Subsequently, extensive research efforts have been dedicated to addressing these challenges through proposing
numerous control system strategies. These include Proportional-Integral-Derivative (PID) controllers, adaptive
nonlinear control, feedback linearization control, and other model-based control systems.
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The backstepping is a recursive control technique with a key advantage of handling complex and nonlinear systems. It
tackles such systems by decomposing them into subsystems, which are subsequently managed iteratively via Lyapunov
functions as well as intermediate virtual controls. This framework ensures improved control performance and system
stability. However, the backstepping method, in its basic form, lacks the robustness property against uncertainties and
external disturbances. On the other hand, sliding mode variable structure control exhibits adaptability, robustness, and
rapid convergence even in the presence of parameter uncertainties and external interference. Consequently,
researchers often integrate sliding mode control with backstepping to enhance the system's anti-interference
capabilities (Zhang et al., 2023; Zinober, 2005).

The hybridization of sliding mode and backstepping control has produced robust control strategies with smooth control
inputs for nonlinear systems (Li and Zhang, 2017). For instance, a stability control strategy for four-rotor UAVs based on
an integral backstepping control was found to achieve improved stability and accuracy under external torque
disturbances (Huo, Huo and Karimi, 2014). In addition, a feedback linearization controller was proposed for a quadrotor
UAV with tiltable rotors to ensure trajectory tracking under gust disturbances (Saif, 2017). As illustrated in (Pang, Zhang
and Xu, 2018) and (Huang, Zhang and Sun, 2019), improved backstepping methods have addressed challenges such as
parameter tuning and large tracking errors in nonlinear mechanical systems. To enhance tracking accuracy, Ali et al.
(2019) proposed adaptive backstepping sliding mode schemes for a coaxial multi-rotor UAV. Moreover, techniques such
as differential evolution optimization (Mousa and Hussein, 2022) and neural network integration (Jiang, Pourpanah, and
Hao, 2019) have further enhanced the robustness and anti-interference capabilities of UAV control systems. Also, a
robust adaptive integral terminal sliding mode control was introduced in (Labbadi and Cherkaoui, 2019) to address
position tracking convergence issues in the presence of model uncertainties and external disturbances.

While sliding mode control excels in handling parameter uncertainties and external disturbances, the discontinuity of
the sliding surface, combined with the controller's fast response, often leads to chattering. Common solutions to
mitigate chattering include replacing the discontinuous sign function with smoother alternative functions, such as
saturation or hyperbolic tangent functions. Nonetheless, these adjustments may compromise the robustness of the
system and increase the closed-loop system's sensitivity to unmodeled dynamics. An alternative solution involves
integrating fractional-order calculus with sliding mode control (Jinkun, 2011). Fractional calculus extends traditional
calculus by incorporating time-memory effects while enhancing robustness. This theory, which originated in 1695, has
undergone substantial evolution and gained widespread applications through the dedicated efforts of numerous
researchers. In fact, incorporating fractional calculus into the controller design framework enhances flexibility because
fractional-order operators more accurately describe the dynamic behaviors of systems. Compared to integer-order
approaches, fractional-order controllers offer superior closed-loop characteristics, thereby enhancing the stability and
reliability of controlled systems (Yang and Xue, 2017). Podlubny's groundbreaking work (Podlubny, 1999) transitioned
traditional PID control to fractional-order PID (FOPID), leading to significant advancements in automatic control theory.
Subsequent studies have explored fractional-order sliding mode control to address nonlinear system disturbances and
improve robustness (Al-Dhaifallah et al., 2023). For instance, fuzzy controllers (Mofid, Mobayen and Wong, 2020) and
innovative fractional sliding surfaces (Rao et al., 2022) have been proposed to reduce chattering while enhancing
performance. Applications of fractional-order control also extend to specialized systems, such as quadrotors with slung
loads (Ferik et al., 2023) and ship navigation (Li et al., 2020), where these methods improve tracking accuracy,
robustness, and response times.

Recently, several SMC-based controllers have been proposed to improve the quadcopter trajectory tracking
performance (Elagib and Karaarslan, 2023). Jing integrated an SMC with a disturbance observer for a quadrotor
subjected to disturbances and in a turbulent indoor space (Jing et al., 2023). Nguyen introduced an integral terminal
sliding mode fault-tolerant controller, which actively addresses disturbances, saturation, and fault issues (Nguyen and
Pitakwachara, 2024). To improve the trajectory tracking of quadcopters, Gedefaw and his team proposed a novel SMC
with a fuzzy PID surface under external disturbances (Gedefaw et al., 2024, 2025). For a fixed-wing UAV, Metekia utilized
fractional calculus theory to develop a robust fractional order SMC, with its gains optimized using Particle Swarm
Optimization (PSO) (Metekia et al., 2025). Moreover, for a fixed-wing UAV, Mohammed utilized adaptive control theory
to stabilize the vehicle under external disturbances (Mohammed et al., 2025), while Yashede employed a Neuro-Fuzzy
Inference System-based Sliding Mode Controller to address the same problem (Yashede et al., 2025). Finally, Abera et
al. (2024) presented a robust enhanced nonsingular adaptive super twisting SMC for tracking of a quadrotor under
external disturbances and model uncertainties.

This work leverages the strengths of both Lyapunov-based nonlinear control and adaptive sliding mode control. The
proposed controller is capable of tracking desired flight paths with a high level of accuracy while ensuring minimal
adjustment time. Specifically, the contributions of the current research are to introduce a novel hybrid nonlinear control
method for four-rotor UAVs in the presence of external disturbances. This hybrid control approach effectively addresses
the challenges associated with the nonlinear dynamics and uncertainties inherent in four-rotor UAV systems, providing
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improved stability and performance. In addition, unlike the simplified linear models, the proposed controller expands
the validity of the control-oriented model by incorporating the nonlinearities associated with the interactions among
the degrees of freedom. The structure of this paper is organized as follows: The dynamic model of the four-rotor UAV
is presented in detail in the second section, providing a thorough understanding of the system's behavior and motion.
To ensure stable flight control and reliable trajectory tracking performance, the third section presents the controller
design for the position and attitude subsystems. Additionally, the stability of the suggested nonlinear control approach
is thoroughly demonstrated using the Lyapunov stability theory. The efficacy and versatility of the proposed controller
are demonstrated under various conditions in the fourth section, which presents the results of simulations for different
flight trajectories of the four-rotor UAV. The paper concludes in the fifth section, where possible avenues for future
research are highlighted, summarizing the main conclusions and implications of this study.

Dynamic Model of Quadcopter UAV

The physical structure of a typical quadcopter, a prevalent configuration of an unmanned aerial vehicle (UAV), is
illustrated in Figures 1 and 2. To define its motion, two primary coordinate systems are predominantly employed: the
body-fixed coordinate system (B), which is attached to the quadcopter's frame and moves with it, and the Earth-fixed
inertial coordinate system (1) (Sabatino, 2015; Niu et al., 2022).To derive the governing equations of motion for the UAV,
the following underlying assumptions are introduced.

1. The four-rotor UAV is treated as a rigid body in this study.

2. The center of mass of the UAV is coincident with the vehicle body-fixed frame.

3. The lift force induced by the propeller is proportional to the square of the propeller's rotational speed.
A flying quadcopter has six degrees of freedom (DoF), which encompass both translational and rotational movements.
The quadcopter's linear location is determined by translational motion along the X, Y, and Z axes, which are denoted by
the letters x, y, and z, respectively. ¢ (roll), 8 (pitch), and ¢ (yaw) are the angular locations that arise from the rotational
motion about these axes. In particular:

@: Rotation about the X-axis (roll).
0: Rotation about the Y-axis (pitch).
1: Rotation about the Z-axis (yaw).

/ _
: /

Figure 1 A quadcopter. Figure 2 Quadcopter physical structure.

Together, these translational and rotational components define the quadcopter's orientation and position in three-
dimensional space. The dynamics of the quadcopter are governed by a set of coupled nonlinear equations that reflect
its translational and rotational behaviors. This dynamical representation considers the interplay of forces and moments
acting on the UAV, ensuring an accurate description of its flight characteristics. The mathematical formulation of these
dynamics is expressed in Eq. 1 (Sabatino, 2015; Niu et al., 2022; Muliadi and Kusumoputro, 2018; Sari and Darwito,
2024). The aforementioned equations form the basis for the development of controllers capable of precise trajectory
tracking, enhancing flight stability, and improving robustness against external disturbances.

A thorough understanding of the quadcopter's physical structure, coordinate systems, and dynamic equations is crucial
for developing advanced control strategies. By leveraging these principles, innovative control methods can be
implemented to optimize the quadcopter's performance in diverse applications, including aerial monitoring, cargo
delivery, and search-and-rescue operations.
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The parameters defining the quadcopter dynamics include several critical components essential for modeling and
control. The rotor's moment of inertia is denoted by J,., while the quadcopter's arm length is represented by [.The
symbols I, I, and I,. The aerodynamic friction coefficient is expressed as k; and Crefers to the proportional coefficient
of the force moment. Additionally, d; represents external disturbances acting on the system. The control inputs of the
system, which are directly influenced by the angular velocities of the quadcopter's four rotors, are given as U;, U, Us,
and U,. These inputs are mathematically formulated and expressed in Eq. (2), encapsulating the relationship between
rotor dynamics and control actions.

Uy ke ke ke ke7w1
Up| | ke 0 -k O0]|lws
Us| =10 =k 0 ke|w? )
Us —ky  ky  —kp kplle?

k; and k;, are the thrust and drag coefficients, respectively. w,. is the linear combination of the speeds of the four rotors
(see Eq. (3)).

Wy = —w; + Wy — w3 + W, (3)

Controller Design

Four-rotor UAVs predominantly use positioning tracking for flight control, and maintaining their in-flight stability is
heavily dependent on attitude control. Thus, this study proposes a novel nonlinear hybrid approach that enhances, to
some extent, the system's tracking accuracy, resilience, and control flexibility.

In this paper, both Lyapunov and adaptive sliding mode control methods equally strive to achieve the desired tracking,
as shown in the block diagram (Figure 3). The proposed method utilizes adaptive sliding-mode control (ASMC)
specifically for the quadcopter's position dynamics. Unlike standard SMC, our approach utilizes an adaptive law to
estimate and compensate for unknown external disturbances that impact the system's performance. The control inputs
viand v, as will be shown, are generated by this adaptive law for the x and y axes, respectively. This adaptive mechanism
distinguishes our approach from conventional SMC by eliminating the need for a priori knowledge of disturbance
bounds, thereby enhancing robustness and tracking accuracy.

Additionally, the inherent robustness built into the paradigm of the sliding mode controller holds for any bounded
disturbance (constant or time varying). However, incorporating wind disturbances will reinforce the evaluation of the
proposed controller's robustness.
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Figure 3 Control system block diagram.

Position Control
The four-rotor UAV's position controller utilizes control input, U;, to determine the thrust demand from each rotor. The

variation of the thrust induced among the rotors enables the controller to regulate the UAV's acceleration in all
directions.
For the position control, the following equations are extracted from Eq. (1)
. Ul . . . kl .
¥ =—[cos¢cosy sinf +sin¢psiny] ——x +d;
m m
y = %[cosd) cosy sinf + sin ¢ siny] — %y +d,
Z7=—[cos¢pcosf]|—g——2z+d
m [cos ¢ I-g m 3

The dynamic model in the altitude direction can be written as in Eq. (4):

Z; =12

21=Z2

z =ﬂ[cos¢c059]—g—ﬁz +d (4)
2 m m 2 3

Moreover, error dynamics are defined in Eq. (5).

€5 = Z1 — Z1q

€6 = Z1 — Z14

és = eq

€6 = Zy — Zyq (5)
In the framework of the sliding mode controller, the following sliding surface is considered:

03 = Azes + eg

O3 = A3é5 + € (6)

03 = Azeq + €¢

O3 = Az€6 + 2, — Zyq

Theorem 1: The control law defined by the equation

m k .. .
Ui=———@+ ;322 — Azeq + Z14 — M5 sign(o3)

cos¢ cosO
is able to stabilize the nonlinear dynamical subsystem governed by Egs. (4)-(6) in a finite time if and only if M5 > 0 and

Ms > Ds.

Proof 1: The following positive definite Lyapunov function candidate is introduced:
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1
V3 == 50-32
V3 = 03 J3

V3 = 03|36, +% cos¢ cosf — g — 1;_322 +d; — Z14|(7)

To guarantee stability in the Lyapunov sense, it is required to have a negative definite or at least a negative semi-definite

time derivative of the Lyapunov energy function. One may be able to devise the control law such that V3 < 0. Choose
U, = mﬁ (g + ]:n—g Z, — Azeg + Ziq — M3 sign(a3)). D;is the maximum value of external disturbance and M;
is a positive constant M3 > Ds. It is important to distinguish between the disturbance value d; and the maximum

possible disturbance value D;. The Lyapunov function is written as:
V3 = 03(=M; sign(o3) + d3) = —M;|03| + 03d3 < —Ms|03| + |03|D; = —|03|(M5 — D;) ® (8)

Since the term (M — D3) is positive, then V; < —(M; — D3)|03] or V; < —(M; — D3)V2V/2. For a trajectory starting

1
V2vs2
from Vo and reaching V; = 0 at the reaching time t;, integrating the above inequality will lead to ¢, < 0. = o5l
(M3-D3)  (M3-D3)

which guarantees the finite time stability.

The x-axis equation is modified as follows, since the quadcopter is an Underactuated system, as shown in the
mathematical equation above. Adding and subtracting v; in the x-axis equation, we have i =

%(cos(@cos(tp)sin(e) + sin(p)sin(y)) — %x +d; +v; —v;. Let the second v; is unknown (and it may be

computed adaptively). Assume 7; be the estimated value of v; and ¥, = v; — ¥; + d; be the estimation error of v;.
Therefore, the x-axis equation is introduced as

X = % [cos(¢p)cos(W)sin(0) + sin(Pp)sin(y)] — %x +v, -9, -7, +d; (9)

In Eq. 4, the variables z1 and z2 represent the state space model for dynamics along the z-axis, whereas x1 and xz are
now used for the dynamics along the x-axis. Eqg. (9) can be rewritten in state space form as:

X1 =X,

X, = % [cos(p) cos() sin(8) + sin(¢p)sin(y)] — %xz +v, -0, -7, +d; (10)
If the error is defined as e; = x; — x4 and e; = x, — X34, the error dynamics can be expressed as

e =e,

€y = X; — X14 (11)
Subsequently, the following sliding manifold g; is introduced

o, =Me +e

0, = A€, + €2

0, = Aiey, + &,

01 = ey + %y, —Xqg (12)
Theorem 2: The control law defined by the equation

v, = —%(cos(¢)cos(lp)sin(9) + sin(d))sin(z,b)) + %xz + 0, + ¥4 — M;sign(oy) and ¥; =0y —y 7

with y is a positive constant, is able to stabilize the nonlinear dynamical subsystem governed by Egs. (10)-(12) if and
onlyif M; > 0and M; > D,.

Proof 2: Considering the following positive definite Lyapunov candidate function:

1
V1 =§0'12+51712

V, = 0,0, + ¥, ¥,
V, =o0,(Le, + % (cos (¢)cos (¥)sin (8) + sin (¢)sin (Y))

k ~ ~ . o~
_lez'i' UI_UI_U1+d1_X1d+U1U1
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Vi =01(Ai1e, + El (cos (¢p)cos ()sin (8) + sin (¢)sin (Y))
_’:n_le + vl - ﬁl - "31 + dl - 5C'1d - 0_1171 + 1711’:7'1

Vi =0,(Ae; + % (cos (¢)cos (Y)sin (8) + sin (¢)sin (Y))

k ~ ~ .. ~ 2
_;1352 + vy =0, — Uy +dy — ¥qg — V(0 + )
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(13)

Choose the control law such that V; < 0. Choose v, = —% (cos(¢)cos(tp)sin(9) + sin(¢)sin(1,l;)) + %xz + 0, +

¥14 — M, sign(oy)and ¥, = 0, —y ¥;. D, is the maximum value of external disturbance and M, is a positive

constant, M; > D;. The Lyapunov function is written as

Vi =0, (=M, sign(o;,) + D) — ¥, < O
Similarly, the y-axis equation can be written as:

V= % [cos(@)sin(y)sin(8) + sin(¢p)cos(P)] — %x + v, -0, -7, +d,
which can be formulated in state space form as:

V=%

y, = % (cos(¢)sin(tp)sin(9) + sin(qb)cos(z,b)) - %yz +v,—0,— T, +d,

Takinge, = y; —y14 and é, = y, — y14, the error dynamics are defined in Eq. (18).

é; =¢e,

€y =Y — Y1a
Choose sliding surface g2 as:

0, =e;+ e,

g, =, 63+ ¢é,

Oy, = Ayey + 6,

0, = Azes + X4 — V1q

Theorem 3: The control law defined by the equation

v, = —% (cos(P)sin(y)sin(8) + sin(¢)cos()) + %yz + U, + 14 — M, sign(o,) and ¥, = g, —

(14)

(15)

(16)

(17)

(18)

is able to stabilize the nonlinear dynamical subsystem governed by Eqgs. 16-18 in if and only if M, > 0 and M, > D,.

Proof 3: Considering the following positive definite Lyapunov candidate function:
1

Vo =3 of +59

V, = 0,6, + ¥, ¥,

V, = 0,(Ae, + % (cos (¢p)sin ()sin (6) + sin (¢p)cos (Y))
— 2yt vy — Dy — By + dy — Figq + By Dy

V, = 0y(Ae, + % (cos(¢) sin(x) sin(8) + sin(¢) cos())
—’:n—zyz + vy — Dy — Ty + dy — Xpg) — 0,7, + D1,

V, = 0,(A,e, + % (cos (¢)sin (Y)sin (8) + sin (¢)cos (Y))

k A ~ " ~ 2
_ﬁYZ + v, =Dy — Uy + dy — ¥pq) — Ua(0, + U3)

(19)
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Choose the control law such that V,< 0. Choose v, = —% (cos(d))sin(llj)sin(e) + sin(¢)cos(lp)) + %yz + 0, +

$1a — M, sign(o,)and ¥, = 0, — U,. D, is the maximum value of external disturbance and M, is a positive constant,
M, > D,. The Lyapunov function is written as:

V, = 0,(—M, sign(o,) + D,) — 73 < Om (20)

The UAV altitude controller, ui, is designed to control the position in the z-axis and is independent of the other
controllers. On the other hand, v: and v: are utilized to control the position in the x and y directions, respectively. As
illustrated in their respective control laws, v: and vz are dependent on the control input u:.

Attitude Controller Design

According to the governing dynamic equations of the quadrotor UAV, the attitude is controlled by U,, Us, and U,. Taking
roll angle ¢ dynamics:

o s (L=, rwyr 1L Lky ;
¢=91p(yl—x)+’—“’+ﬂ——4 (21)

Ix Ix Ix

Convert Eq. 21 to state space form:
d)l = ¢,

; -1 Jrw
b2 = O (%) + 52+

Ix Ix Ix

LU, kg

b2 (22)

Defining the error e; = ¢p; — ¢4 then é, = ¢, — ¢,. Hence, the error dynamics can be written as:

é7=68

g =Py — P1a (23)
. Iy—1 Loy LU, Lk -

38=92¢2(y1xz)+%+72_1_:¢2_¢1d (24)

Theorem 4: The control law defined by the equation

L, -1 w Lk .
z Z) _]r L4 P, —egt+ Pig
P I P

Ly
U, = T [_37 — 03, (
is able to stabilize the nonlinear dynamical subsystem governed by Egs. (21)-(24).

Proof 4: Select a Lyapunov function that reflects the system’s energy. A common choice for such second-order systems
is:

V== e+ (25)
Taking the time derivative of V:

V4, = e7é7 + esés

V) = e,6; + eg(¢py — P1a)
. I, —1 Jrw LU, Ik, .
V4:e7es+es[92¢2(y1 Z>+ TI T+ I _[—¢2_¢1d]
X X X X
Y Iy—=Iz Jrwr LU. Lk iy
o=l o () i &

To ensure stability, a control law U, is selected such that V, < 0. A robust control law can be designed to cancel nonlinear
terms and provide robustness against disturbances. One possible form is:

I Iy—Iz Jror Lk s
U, == [—97 — 602, (y,—x) —To et ¢1d] (27)
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Table1 Quadcopter Parameters.

Quadcopter Value Units Quadcopter Value Units
Parameters Parameters

m 0.468 kg I 4.856 x 1073 kg.m?

Jr 3.357 x 1075 kg.m? I 8.801 x 1073 kg.m?

2
k, 3357 x 107 N/ (ﬂ) Ky, Ky ks 0.1 N.s/rad
s
2
k, 2.980 x 1076 N.m/ (L") Ky, ks, ke 0.12 N.s/rad
S
g 9.8 m/s? C 1 —
I 4.856 x 1073 kg.m? l 0.225 m

Substituting Eq. (27) into Eq. (26) leads to V, = eZ < 0. Moreover, Egs. (28) and (29) represent the error dynamics for 8
and .

€9 = €99

é10 = 0,9 (%) - thI]_;wr + % - % 6, — 614 (28)
€11 = e

é12 = 0,0, (le—zly) + % - %1/)2 — g (29)

Similar calculation procedures can be conducted for designing the Us and Us to lead to the equations represented in
(30) and (31), respectively.

I I,-1 Iy 1k .

U3 = Ty —69 - 92'(/)2 < Iyx> + 21—;(“7” + 7592 - 610 + 91{1] (30)
1 Ix—1 Lk "

U, = ?z [_911 — 0,0, (xlz y) - f@bz —ep+ ‘l’m] (31)

So far, the design of a nonlinear hybrid control system (Adaptive SMC + Robust Nonlinear Lyapunov) for the quadrotor
UAV has been completed.

Table 2 Controller. Table 3 External Disturbances.
Parameters Value Quadcopter Parameters Value Time
A 1 dy 2 5<t<10
Ay 1 d, 0.8 5<t<10
A3 1 ds; 3 5<t<10
M, 3
M, 1
M 4
y 1

Simulation Results

In this section, three simulation scenarios, namely, fixed point tracking, take-off tracking, and spiral trajectory tracking,
are conducted to evaluate the performance of the proposed controller. The system dynamics introduced in Eq. (1) is
chosen as the virtual experimental plant. A UAV simulation model based on a nonlinear hybrid control technique is
constructed using a simulation experiment platform, and its performance is experimentally verified. Complex control
systems can be simulated and analyzed using the platform’s robust modeling and simulation features. Table | lists the
values for the quadcopter parameters (Abdulkareem et al., 2022), whereas Table Il lists the values for the controller
parameters. The values of M; are selected such that they should be equal to or greater than the maximum possible value
of the external disturbance to guarantee robustness. Furthermore, 4; values are selected to strike a balance between
the high convergence speed associated with high A values and the smooth control input with less significant chattering
resulting from low A values. As shown in Table lll, the external disturbances are applied from t > 5 seconds to t < 10
seconds.
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Figure 4 Fixed-Point position x response curve. Figure 5 Fixed-Point position y response curve.

Fixed-Point Flight Simulation

The tracking targets in the fixed-point flight simulation are x;; = 15, y;4 = 8,2;4 = 5, and ¥, 4=1. Figures 4 to 9 show
the simulation results of the UAV’s fixed-point flying scenario. These results demonstrate how the proposed approach
may improve the system’s performance while tracking trajectories.

Figures 4, 5, and 6 show the position tracking performance of the x, y, and z coordinates, respectively. The roll angle
response about the x-axis is shown in Figure 7. The yaw and pitch are shown in 9 and 8, respectively. Moreover, for the
case of a fixed-point trajectory, the sliding surfaces are shown in Figure 10. Figure 11 illustrates the control demand to
achieve the closed-loop response. The chattering problem is not as severe as illustrated in the figure because of the
relatively acceptable amplitudes of the spikes.
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Figure 10 Sliding Surfaces for Fixed-Point tracking. Figure 11 Control inputs for Fixed-Point tracking.

The results demonstrate that the UAV system successfully converges to the desired target values within a finite time.
Notably, the proposed control strategy significantly enhances the convergence speed and tracking accuracy, as
evidenced by the rapid stabilization of the system’s states. This highlights the robustness and efficiency of the proposed

method in achieving stable fixed-point flight for UAVs.

Take-off Flight Simulation

In the take-off flight, the tracking target is setto x;4 = 0,y,4 =0,z14 = h [ﬂ(h is the height of each step, T is the
duration of each step) and 1, ; = 0. These results demonstrate how the proposed approach can enhance the system’s
trajectory tracking performance. Figures 12, 13, and 14 show the x,y, and z position tracking, respectively. The roll
angle dynamics are shown in Figure 15, while Figures 16 and 17 illustrate the yaw and pitch angles. The corresponding

sliding surfaces and control inputs are displayed in Figures 18 and 19, respectively.
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Asiillustrated in Figures 12 to 19, the simulation data reveal that the UAV system achieves the desired take-off trajectory
with high precision and minimal overshoot. The proposed control strategy ensures smooth transitions between steps,
as indicated by the consistent tracking performance across all axes. These results underscore the method’s effectiveness
in handling dynamic flight scenarios, such as take-off, with enhanced stability and convergence.
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Figure 20 Spiral Trajectory position x response curve. Figure 21 Spiral Trajectory position y response curve.

Spiral Curve Tracking Simulation

Spiral ascent is a common flight mode of UAVs. This section assumes that the expected trajectory of quadrotor UAVs is
a spiral ascent curve, and the desired trajectory is designed as x;4 = 5¢c0s(2t), y14 = 3sin(2t),z;4 = 4t and P4 =
0.2. The results of this section demonstrate how the proposed approach can enhance the system’s performance in
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tracking trajectories. The simulation results, illustrated in Figures 20 to 28, demonstrate the UAV’s tracking performance

269

under this complex trajectory. Figures 20, 21, and 22 show the position tracking along x, y, and z axes, respectively. The
roll angle response is shown in Figure 24, while the pitch and yaw responses are shown in Figures 25 and 26, respectively.
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The sliding surfaces and controller inputs for the spiral trajectory are shown in Figures 27 and 28, respectively.
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Asillustrated in Figures 20 to 28, the results indicate that the UAV system successfully tracks the spiral ascent trajectory
with high accuracy and minimal deviation. The proposed control strategy exhibits excellent performance in handling the
nonlinearities and coupling effects inherent in spiral flight, as evidenced by the smooth and consistent tracking across
all states. This further validates the method’s applicability to complex flight scenarios, ensuring robust and stable
operation.

Discussion

The simulation results presented in the previous section clearly highlight the effectiveness and robustness of the
proposed control strategy in handling numerous trajectory-tracking missions under different operating envelopes. In
the fixed-point scenario, the closed-loop system showed rapid convergence to the desired values with minimal
overshoot and chattering. In fact, these measures can be further optimized using advanced algorithms for tuning the
controller’s gains.

In the take-off maneuver, the closed-loop system demonstrated smooth tracking and transition between steps, which
is crucial for safe vertical ascents. Despite the continuities within the steps in the target altitude, the closed-loop system
was able to maintain high tracking performance, which reflects the controller’s adaptability even in the presence of
control input spikes.

For a more challenging nonlinear and coupled dynamics associated with the spiral trajectory tracking maneuver, the
proposed controller enabled the UAV to successfully track the 3D spiral trajectory with minimal tracking steady-state
error. This behavior proves the controller’s ability to handle intricate trajectories in nonlinear regimes effectively.

The proposed control methodology offers several significant advantages over existing techniques, particularly in terms
of robustness and comprehensive trajectory tracking. First, while many existing studies neglect external disturbances,
the robustness of the proposed method has been rigorously validated. Extensive simulations have been conducted to
demonstrate its effectiveness in the presence of external disturbances for various missions, including fixed-point
hovering, takeoff, and spiral trajectory tracking. This comprehensive verification is a key strength of the current work,
as it confirms the controller's ability to maintain stable and accurate performance under challenging conditions.

Furthermore, the proposed approach addresses several limitations observed in prior research. For instance, the work
presented in (Kotch et al., 2019) and (Masse et al., 2018) primarily focuses on applying advanced control techniques like
deep reinforcement learning, LQR, and H- to attitude control only. Similarly, reference (Polvara et al., 2018) apply a
deep reinforcement learning technique exclusively to the specific task of landing control. This work, in contrast, provides
a unified solution for full quadcopter trajectory tracking, encompassing position and attitude control simultaneously.

A direct performance comparison with a traditional method, such as the PID controller in (Bayisa and Li, 2019), further
highlights the superiority of the proposed controller. The results in (Bayisa and Li, 2019) show a settling time of 5.5
seconds with an overshoot of 3-5% for position tracking. The proposed controller achieves a significantly faster settling
time of 3.5 seconds and demonstrates zero overshoot, which indicates a more stable and efficient response.
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Finally, when compared to the nonlinear control method in (Abdulkareem et al., 2022), the controller demonstrates
superior performance in complex maneuvers. The spiral trajectory tracking presented in (Abdulkareem et al., 2022)
lacks the precision and accuracy achieved by the proposed method, which successfully tracks the complex path with
minimal error. This confirms the enhanced capability of the current controller for intricate and dynamic tasks.

Conclusion

This paper presented a nonlinear hybrid control strategy for addressing the challenges of low tracking accuracy in
attitude and position control associated with the quadrotor UAVs. By integrating adaptive sliding mode control with
Lyapunov theory, the proposed method effectively enhances trajectory tracking performance. While improving
robustness and flexibility in the presence of external disturbances, the Lyapunov stability theory was utilized to
rigorously analyze the stability of the control system, and the results confirmed that the proposed controller ensures
system stability under various operating conditions. Extensive simulation tests demonstrated the effectiveness and
feasibility of the developed control approach. The simulation results revealed that the proposed method significantly
improves tracking accuracy for both attitude and position control, outperforming conventional controllers in terms of
convergence speed and precision. In fact, the ability to quickly and accurately track desired trajectories, even in the
presence of uncertainties, makes this approach a robust and reliable solution for complex UAV applications.
Furthermore, the hybrid control strategy demonstrated strong adaptability, making it suitable for diverse operational
scenarios. It provides a systematic paradigm to handle nonlinearities and disturbances while simultaneously maintaining
high performance. This makes the proposed method a valuable contribution to the field of UAV control, with potential
applications in surveillance, delivery, and other advanced aerial operations. Overall, the proposed nonlinear hybrid
control strategy proves to be an effective tool for improving the performance of quadrotor UAVs, ensuring precise
trajectory tracking, enhanced robustness, and stability, making it a promising technique for real-world UAV missions.
Finally, to capture a more realistic physical representation of external disturbances, a future extension of the current
work is to consider more realistic time-varying disturbance models, such as Dryden gusts or stochastic/harmonic
models, for improved performance evaluation of the proposed controller. Additionally, to examine the proposed
controller’s real-world applicability, this work will be extended to incorporate hardware-in-the-loop testing for real-
time, practical validation.
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