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Abstract 

This paper addresses the challenges of low tracking accuracy in the attitude and position control of quadrotor unmanned aerial 
vehicles (UAVs). To overcome these issues, a nonlinear hybrid control strategy is proposed by combining adaptive sliding mode 
control with Lyapunov theory. Accounting for the nonlinearities associated with the coupling among the UAV degrees of freedom, 
unlike simplified control-oriented models, the proposed strategy is designed to enhance trajectory tracking performance while 
improving control flexibility and robustness against external disturbances. The proposed strategy expands the validity of the control-
oriented model compared with the linear controllers. Moreover, the inherent robustness built into the paradigm of the sliding mode 
controller improves the robustness against external disturbances as well as uncaptured dynamics within the modeling process. The 
stability of the system is rigorously analysed using the Lyapunov stability theory, and the results confirm the stability of the proposed 
controller under various conditions. Extensive simulation tests are conducted to verify the effectiveness and feasibility of the control 
strategy. The simulation results demonstrate that the proposed method significantly improves tracking accuracy in both attitude and 
position control, providing a robust and reliable solution for quadrotor UAVs. This hybrid approach ensures precise trajectory tracking 
while maintaining stability, making it a promising technique for advanced UAV applications.  
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Introduction 

In recent decades, four-rotor unmanned aerial vehicles (UAVs), commonly referred to as quadcopters, have garnered 
significant attention in the literature due to their low cost, vertical take-off and landing (VTOL) capabilities, and simple 
design and manufacturing process compared to their fixed-wing counterparts. The aforementioned features have made 
them an indispensable aerial vehicle in a wide range of applications in numerous fields. Consequently, they can be 
implemented in a broad spectrum of applications, including agriculture, industry, military surveillance and 
reconnaissance, commerce, search and rescue missions, and even everyday life activities. Furthermore, they perform 
various tasks, including crop monitoring, fertilization, spraying, aerial terrain mapping, power line maintenance, cargo 
transportation, and more (Cardenas and De Barros, 2019). In fact, the foundation for effectively accomplishing the 
previously mentioned specialized tasks is the accurate trajectory tracking control system. However, the inherent 
nonlinearity associated with the UAV's dynamic nature, alongside the uncertainties arising from the complexity of 
capturing a precise model for an aerodynamic-structural interacting system, is a challenge. As a result, the development 
of navigation systems, position estimation, flight stability, and several other control tasks is significantly affected. 
Subsequently, extensive research efforts have been dedicated to addressing these challenges through proposing 
numerous control system strategies. These include Proportional-Integral-Derivative (PID) controllers, adaptive 
nonlinear control, feedback linearization control, and other model-based control systems. 
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The backstepping is a recursive control technique with a key advantage of handling complex and nonlinear systems. It 
tackles such systems by decomposing them into subsystems, which are subsequently managed iteratively via Lyapunov 
functions as well as intermediate virtual controls. This framework ensures improved control performance and system 
stability. However, the backstepping method, in its basic form, lacks the robustness property against uncertainties and 
external disturbances. On the other hand, sliding mode variable structure control exhibits adaptability, robustness, and 
rapid convergence even in the presence of parameter uncertainties and external interference. Consequently, 
researchers often integrate sliding mode control with backstepping to enhance the system's anti-interference 
capabilities (Zhang et al., 2023; Zinober, 2005). 

The hybridization of sliding mode and backstepping control has produced robust control strategies with smooth control 
inputs for nonlinear systems (Li and Zhang, 2017). For instance, a stability control strategy for four-rotor UAVs based on 
an integral backstepping control was found to achieve improved stability and accuracy under external torque 
disturbances (Huo, Huo and Karimi, 2014). In addition, a feedback linearization controller was proposed for a quadrotor 
UAV with tiltable rotors to ensure trajectory tracking under gust disturbances (Saif, 2017). As illustrated in (Pang, Zhang 
and Xu, 2018) and (Huang, Zhang and Sun, 2019), improved backstepping methods have addressed challenges such as 
parameter tuning and large tracking errors in nonlinear mechanical systems. To enhance tracking accuracy, Ali et al. 
(2019) proposed adaptive backstepping sliding mode schemes for a coaxial multi-rotor UAV. Moreover, techniques such 
as differential evolution optimization (Mousa and Hussein, 2022) and neural network integration (Jiang, Pourpanah, and 
Hao, 2019) have further enhanced the robustness and anti-interference capabilities of UAV control systems. Also, a 
robust adaptive integral terminal sliding mode control was introduced in (Labbadi and Cherkaoui, 2019) to address 
position tracking convergence issues in the presence of model uncertainties and external disturbances. 

While sliding mode control excels in handling parameter uncertainties and external disturbances, the discontinuity of 
the sliding surface, combined with the controller's fast response, often leads to chattering. Common solutions to 
mitigate chattering include replacing the discontinuous sign function with smoother alternative functions, such as 
saturation or hyperbolic tangent functions. Nonetheless, these adjustments may compromise the robustness of the 
system and increase the closed-loop system's sensitivity to unmodeled dynamics. An alternative solution involves 
integrating fractional-order calculus with sliding mode control (Jinkun, 2011). Fractional calculus extends traditional 
calculus by incorporating time-memory effects while enhancing robustness. This theory, which originated in 1695, has 
undergone substantial evolution and gained widespread applications through the dedicated efforts of numerous 
researchers. In fact, incorporating fractional calculus into the controller design framework enhances flexibility because 
fractional-order operators more accurately describe the dynamic behaviors of systems. Compared to integer-order 
approaches, fractional-order controllers offer superior closed-loop characteristics, thereby enhancing the stability and 
reliability of controlled systems (Yang and Xue, 2017). Podlubny's groundbreaking work (Podlubny, 1999) transitioned 
traditional PID control to fractional-order PID (FOPID), leading to significant advancements in automatic control theory. 
Subsequent studies have explored fractional-order sliding mode control to address nonlinear system disturbances and 
improve robustness (Al-Dhaifallah et al., 2023). For instance, fuzzy controllers (Mofid, Mobayen and Wong, 2020) and 
innovative fractional sliding surfaces (Rao et al., 2022) have been proposed to reduce chattering while enhancing 
performance. Applications of fractional-order control also extend to specialized systems, such as quadrotors with slung 
loads (Ferik et al., 2023) and ship navigation (Li et al., 2020), where these methods improve tracking accuracy, 
robustness, and response times. 

Recently, several SMC-based controllers have been proposed to improve the quadcopter trajectory tracking 
performance (Elagib and Karaarslan, 2023). Jing integrated an SMC with a disturbance observer for a quadrotor 
subjected to disturbances and in a turbulent indoor space (Jing et al., 2023). Nguyen introduced an integral terminal 
sliding mode fault-tolerant controller, which actively addresses disturbances, saturation, and fault issues (Nguyen and 
Pitakwachara, 2024). To improve the trajectory tracking of quadcopters, Gedefaw and his team proposed a novel SMC 
with a fuzzy PID surface under external disturbances (Gedefaw et al., 2024, 2025). For a fixed-wing UAV, Metekia utilized 
fractional calculus theory to develop a robust fractional order SMC, with its gains optimized using Particle Swarm 
Optimization (PSO) (Metekia et al., 2025). Moreover, for a fixed-wing UAV, Mohammed utilized adaptive control theory 
to stabilize the vehicle under external disturbances (Mohammed et al., 2025), while Yashede employed a Neuro-Fuzzy 
Inference System-based Sliding Mode Controller to address the same problem (Yashede et al., 2025). Finally, Abera et 
al. (2024) presented a robust enhanced nonsingular adaptive super twisting SMC for tracking of a quadrotor under 
external disturbances and model uncertainties. 

This work leverages the strengths of both Lyapunov-based nonlinear control and adaptive sliding mode control. The 
proposed controller is capable of tracking desired flight paths with a high level of accuracy while ensuring minimal 
adjustment time. Specifically, the contributions of the current research are to introduce a novel hybrid nonlinear control 
method for four-rotor UAVs in the presence of external disturbances. This hybrid control approach effectively addresses 
the challenges associated with the nonlinear dynamics and uncertainties inherent in four-rotor UAV systems, providing 
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improved stability and performance. In addition, unlike the simplified linear models, the proposed controller expands 
the validity of the control-oriented model by incorporating the nonlinearities associated with the interactions among 
the degrees of freedom. The structure of this paper is organized as follows: The dynamic model of the four-rotor UAV 
is presented in detail in the second section, providing a thorough understanding of the system's behavior and motion. 
To ensure stable flight control and reliable trajectory tracking performance, the third section presents the controller 
design for the position and attitude subsystems. Additionally, the stability of the suggested nonlinear control approach 
is thoroughly demonstrated using the Lyapunov stability theory. The efficacy and versatility of the proposed controller 
are demonstrated under various conditions in the fourth section, which presents the results of simulations for different 
flight trajectories of the four-rotor UAV. The paper concludes in the fifth section, where possible avenues for future 
research are highlighted, summarizing the main conclusions and implications of this study. 

Dynamic Model of Quadcopter UAV 

The physical structure of a typical quadcopter, a prevalent configuration of an unmanned aerial vehicle (UAV), is 
illustrated in Figures 1 and 2. To define its motion, two primary coordinate systems are predominantly employed: the 
body-fixed coordinate system (B), which is attached to the quadcopter's frame and moves with it, and the Earth-fixed 
inertial coordinate system (I) (Sabatino, 2015; Niu et al., 2022).To derive the governing equations of motion for the UAV, 
the following underlying assumptions are introduced. 

1. The four-rotor UAV is treated as a rigid body in this study. 
2. The center of mass of the UAV is coincident with the vehicle body-fixed frame. 
3. The lift force induced by the propeller is proportional to the square of the propeller's rotational speed. 

A flying quadcopter has six degrees of freedom (DoF), which encompass both translational and rotational movements. 
The quadcopter's linear location is determined by translational motion along the X, Y, and Z axes, which are denoted by 
the letters x, y, and z, respectively. φ (roll), θ (pitch), and ψ (yaw) are the angular locations that arise from the rotational 
motion about these axes. In particular: 

𝜑: Rotation about the 𝑋-axis (roll). 
𝜃: Rotation about the 𝑌-axis (pitch). 
𝜓: Rotation about the 𝑍-axis (yaw). 

 

 
Figure 1  A quadcopter. Figure 2  Quadcopter physical structure. 

 
Together, these translational and rotational components define the quadcopter's orientation and position in three-
dimensional space. The dynamics of the quadcopter are governed by a set of coupled nonlinear equations that reflect 
its translational and rotational behaviors. This dynamical representation considers the interplay of forces and moments 
acting on the UAV, ensuring an accurate description of its flight characteristics. The mathematical formulation of these 
dynamics is expressed in Eq. 1 (Sabatino, 2015; Niu et al., 2022; Muliadi and Kusumoputro, 2018; Sari and Darwito, 
2024). The aforementioned equations form the basis for the development of controllers capable of precise trajectory 
tracking, enhancing flight stability, and improving robustness against external disturbances. 

A thorough understanding of the quadcopter's physical structure, coordinate systems, and dynamic equations is crucial 
for developing advanced control strategies. By leveraging these principles, innovative control methods can be 
implemented to optimize the quadcopter's performance in diverse applications, including aerial monitoring, cargo 
delivery, and search-and-rescue operations. 

𝑥̈ =
𝑈1

𝑚
[cos𝜙 cos𝜓 sin 𝜃 + sin 𝜙 sin 𝜓] −

𝑘1

𝑚
𝑥̇ + 𝑑1  
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𝑦̈ =
𝑈1

𝑚
[cos𝜙 cos𝜓 sin 𝜃 + sin𝜙 sin𝜓] −

𝑘2

𝑚
𝑦̇ + 𝑑2  

𝑧̈ =
𝑈1

𝑚
[cos𝜙 cos 𝜃 ] − 𝑔 −

𝑘3

𝑚
𝑧̇ + 𝑑3  

𝜙̈ = 𝜃̇𝜓̇ (
𝐼𝑦−𝐼𝑧

𝐼𝑥
) +

𝐽𝑟𝜔𝑟

𝐼𝑥
+

𝑙𝑈2

𝐼𝑥
−

𝑙𝑘4

𝐼𝑥
𝜙̇         (1) 

𝜃̈ = 𝜃̇𝜓̇ (
𝐼𝑧 − 𝐼𝑥

𝐼𝑦
) − 𝜙̇

𝐽𝑟𝜔𝑟

𝐼𝑥
+

𝑙𝑈3

𝐼𝑦
−

𝑙𝑘5

𝐼𝑥
𝜃̇ 

𝜓̈ = 𝜃̇𝜙̇ (
𝐼𝑥 − 𝐼𝑦

𝐼𝑧
) +

𝐶𝑈4

𝐼𝑧
−

𝑙𝑘6

𝐼𝑥
𝜓̇ 

The parameters defining the quadcopter dynamics include several critical components essential for modeling and 
control. The rotor's moment of inertia is denoted by 𝐽𝑟, while the quadcopter's arm length is represented by 𝑙.The 
symbols 𝐼𝑥, 𝐼𝑦 , and 𝐼𝑧. The aerodynamic friction coefficient is expressed as 𝑘𝑖  and C refers to the proportional coefficient 

of the force moment. Additionally, 𝑑𝑖  represents external disturbances acting on the system. The control inputs of the 
system, which are directly influenced by the angular velocities of the quadcopter's four rotors, are given as 𝑈1, 𝑈2, 𝑈3, 
and 𝑈4. These inputs are mathematically formulated and expressed in Eq. (2), encapsulating the relationship between 
rotor dynamics and control actions. 

[

𝑈1

𝑈2

𝑈3

𝑈4

] = [

𝑘𝑡 𝑘𝑡 𝑘𝑡 𝑘𝑡

𝑘𝑡 0 −𝑘𝑡 0
0 −𝑘𝑡 0 𝑘𝑡

−𝑘𝑏 𝑘𝑏 −𝑘𝑏 𝑘𝑏

]

[
 
 
 
 
𝜔1

2

𝜔2
2

𝜔3
2

𝜔4
2]
 
 
 
 

        (2) 

𝑘𝑡 and 𝑘𝑏 are the thrust and drag coefficients, respectively. 𝜔𝑟 is the linear combination of the speeds of the four rotors 
(see Eq. (3)). 

𝜔𝑟 = −𝜔1 + 𝜔2 − 𝜔3 + 𝜔4          (3) 

Controller Design 

Four-rotor UAVs predominantly use positioning tracking for flight control, and maintaining their in-flight stability is 
heavily dependent on attitude control. Thus, this study proposes a novel nonlinear hybrid approach that enhances, to 
some extent, the system's tracking accuracy, resilience, and control flexibility. 

In this paper, both Lyapunov and adaptive sliding mode control methods equally strive to achieve the desired tracking, 
as shown in the block diagram (Figure 3). The proposed method utilizes adaptive sliding-mode control (ASMC) 
specifically for the quadcopter's position dynamics. Unlike standard SMC, our approach utilizes an adaptive law to 
estimate and compensate for unknown external disturbances that impact the system's performance. The control inputs 
v1 and v2, as will be shown, are generated by this adaptive law for the x and y axes, respectively. This adaptive mechanism 
distinguishes our approach from conventional SMC by eliminating the need for a priori knowledge of disturbance 
bounds, thereby enhancing robustness and tracking accuracy. 

Additionally, the inherent robustness built into the paradigm of the sliding mode controller holds for any bounded 
disturbance (constant or time varying). However, incorporating wind disturbances will reinforce the evaluation of the 
proposed controller's robustness. 
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Figure 3  Control system block diagram. 

Position Control 
The four-rotor UAV's position controller utilizes control input, 𝑈1, to determine the thrust demand from each rotor. The 
variation of the thrust induced among the rotors enables the controller to regulate the UAV's acceleration in all 
directions. 

For the position control, the following equations are extracted from Eq. (1)  

𝑥̈ =
𝑈1

𝑚
[cos𝜙 cos𝜓 sin 𝜃 + sin 𝜙 sin 𝜓] −

𝑘1

𝑚
𝑥̇ + 𝑑1  

𝑦̈ =
𝑈1

𝑚
[cos 𝜙 cos𝜓 sin 𝜃 + sin 𝜙 sin 𝜓] −

𝑘2

𝑚
𝑦̇ + 𝑑2   

𝑧̈ =
𝑈1

𝑚
[cos𝜙 cos 𝜃 ] − 𝑔 −

𝑘3

𝑚
𝑧̇ + 𝑑3  

The dynamic model in the altitude direction can be written as in Eq. (4): 

𝑧1 = z 

𝑧̇1 = 𝑧2 

𝑧̈2 =
𝑈1

𝑚
[cos𝜙 cos 𝜃 ] − 𝑔 −

𝑘3

𝑚
𝑧2 + 𝑑3          (4) 

Moreover, error dynamics are defined in Eq. (5). 

𝑒5 = 𝑧1 − 𝑧1𝑑 

𝑒6 = 𝑧̇1 − 𝑧̇1𝑑 

𝑒̇5 = 𝑒6 

𝑒̇6 = 𝑧̇2 − 𝑧̈2𝑑            (5) 

In the framework of the sliding mode controller, the following sliding surface is considered: 

𝜎3 = 𝜆3𝑒5 + 𝑒6 

𝜎̇3 = 𝜆3𝑒̇5 + 𝑒̇6            (6) 

𝜎̇3 = 𝜆3𝑒6 + 𝑒̇6 

 𝜎̇3 = 𝜆3𝑒6 + 𝑧̇2 − 𝑧̈2𝑑 

Theorem 1: The control law defined by the equation 

 𝑈1 =
𝑚

𝑐𝑜𝑠𝜙 𝑐𝑜𝑠𝜃
(𝑔 +

𝑘3

𝑚
𝑧2 − 𝜆3𝑒6 + 𝑧̈1𝑑 − 𝑀3 𝑠𝑖𝑔𝑛(𝜎3) 

is able to stabilize the nonlinear dynamical subsystem governed by Eqs. (4)-(6) in a finite time if and only if 𝑀3 > 0 and 

𝑀3  >  𝐷3. 

Proof 1: The following positive definite Lyapunov function candidate is introduced: 
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𝑉3 =
1

2
𝜎3

2 

𝑉̇3 = 𝜎3 𝜎̇3 

𝑉̇3 = 𝜎3|𝜆3𝑒6 +
𝑈1

𝑚
 𝑐𝑜𝑠𝜙 𝑐𝑜𝑠𝜃 − 𝑔 −

𝑘3

𝑚
𝑧2 + 𝑑3 − 𝑧̈1𝑑| (7) 

To guarantee stability in the Lyapunov sense, it is required to have a negative definite or at least a negative semi-definite 
time derivative of the Lyapunov energy function. One may be able to devise the control law such that 𝑉3 < 0. Choose 

𝑈1 =
𝑚

𝑐𝑜𝑠𝜙 𝑐𝑜𝑠𝜃
  (𝑔 +

𝑘3

𝑚
 𝑧2  −  𝜆3𝑒6  +  𝑧̈1𝑑 − 𝑀3 𝑠𝑖𝑔𝑛(𝜎3)).   𝐷3 is the maximum value of external disturbance and 𝑀3 

is a positive constant 𝑀3 > 𝐷3. It is important to distinguish between the disturbance value 𝑑i and the maximum 
possible disturbance value 𝐷𝑖 . The Lyapunov function is written as: 

𝑉̇3 = 𝜎3(−𝑀3 𝑠𝑖𝑔𝑛(𝜎3) + 𝑑3) = −𝑀3|𝜎3| + 𝜎3𝑑3 ≤ −𝑀3|𝜎3| + |𝜎3|𝐷3 = −|𝜎3|(𝑀3 − 𝐷3)  ◼  (8) 

Since the term (𝑀3 − 𝐷3) is positive, then 𝑉̇3 ≤ −(𝑀3 − 𝐷3)|𝜎3| or 𝑉̇3 ≤ −(𝑀3 − 𝐷3)√2𝑉1/2. For a trajectory starting 

from V0 and reaching 𝑉3 = 0 at the reaching time tr, integrating the above inequality will lead to 𝑡𝑟 ≤
√2𝑉30

1
2

(𝑀3−𝐷3)
=

|𝜎30|

(𝑀3−𝐷3)
  

which guarantees the finite time stability. 

The x-axis equation is modified as follows, since the quadcopter is an Underactuated system, as shown in the 
mathematical equation above. Adding and subtracting 𝑣1 in the 𝑥-axis equation, we have 𝑥̈ =
𝑈1

𝑚
(𝑐𝑜𝑠(𝜙)𝑐𝑜𝑠(𝜓)𝑠𝑖𝑛(𝜃) + 𝑠𝑖𝑛(𝜙)𝑠𝑖𝑛(𝜓)) −

𝑘1

𝑚
𝑥̇ + 𝑑1 + 𝑣1 − 𝑣1. Let the second 𝑣1 is unknown (and it may be 

computed adaptively). Assume 𝑣̂1 be the estimated value of 𝑣1 and 𝑣̃1  =  𝑣1 − 𝑣̂1 + 𝑑1 be the estimation error of 𝑣1. 
Therefore, the 𝑥-axis equation is introduced as 

𝑥̈  =
𝑈1

𝑚
[𝑐𝑜𝑠(𝜙)𝑐𝑜𝑠(𝜓)𝑠𝑖𝑛(𝜃) + 𝑠𝑖𝑛(𝜙)𝑠𝑖𝑛(𝜓)] −

𝑘1

𝑚
𝑥̇  +  𝑣1 − 𝑣̂1 − 𝑣̃1 + 𝑑1    (9) 

In Eq. 4, the variables z1 and z2 represent the state space model for dynamics along the z-axis, whereas x1 and x2 are 
now used for the dynamics along the x-axis. Eq. (9) can be rewritten in state space form as: 

𝑥̈1  = 𝑥2 

𝑥̈2  =
𝑈1

𝑚
[𝑐𝑜𝑠(𝜙) 𝑐𝑜𝑠(𝜓) 𝑠𝑖𝑛(𝜃) + 𝑠𝑖𝑛(𝜙)𝑠𝑖𝑛(𝜓)] −

𝑘1

𝑚
𝑥2  +  𝑣1 − 𝑣̂1 − 𝑣̃1 + 𝑑1                               (10) 

If the error is defined as 𝑒1 = 𝑥1 − 𝑥1𝑑  and  𝑒1 = 𝑥2  −  𝑥̇1𝑑  , the error dynamics can be expressed as 

𝑒̇1 = 𝑒2 

𝑒̇2 = 𝑥2 − 𝑥̈1𝑑                           (11) 

Subsequently, the following sliding manifold 𝜎1 is introduced 

𝜎1 = 𝜆1𝑒1 + 𝑒2 

𝜎̇1  =  𝜆1𝑒̇1 + 𝑒̇2 

𝜎̇1 = 𝜆1𝑒2  +  𝑒̇2 

𝜎̇1  =  𝜆1𝑒2 + 𝑥̇2 − 𝑥̈1𝑑                         (12) 

Theorem 2: The control law defined by the equation 

𝑣1  = −
𝑈1

𝑚
(𝑐𝑜𝑠(𝜙)𝑐𝑜𝑠(𝜓)𝑠𝑖𝑛(𝜃) + 𝑠𝑖𝑛(𝜙)𝑠𝑖𝑛(𝜓)) +

𝑘1

𝑚
𝑥2 + 𝑣̂1  +  𝑥̈1𝑑 − 𝑀1𝑠𝑖𝑔𝑛(𝜎1)  and  𝑣̃1 = 𝜎1 − 𝛾 𝑣̃1 

with 𝛾 is a positive constant, is able to stabilize the nonlinear dynamical subsystem governed by Eqs. (10)-(12) if and 
only if 𝑀1 > 0 and 𝑀1 > 𝐷1. 

Proof 2: Considering the following positive definite Lyapunov candidate function: 

𝑉1 =
1

2
 𝜎1

2 +
1

2
𝑣̃1

2 

𝑉̇1 = 𝜎1𝜎̇1 + 𝑣̃1 𝑣̇̃1 

𝑉̇1 = 𝜎1(𝜆1𝑒2  +
𝑈1

𝑚
 (cos (𝜙)cos (𝜓)sin (𝜃) + sin (𝜙)sin (𝜓)) 

 −
𝑘1

𝑚
𝑥2 + 𝑣1 − 𝑣̂1 − 𝑣̃1 + 𝑑1 − 𝑥̈1𝑑 + 𝑣̃1 𝑣̇̃1 
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𝑉̇1 = 𝜎1(𝜆1𝑒2  +
𝑈1

𝑚
 (cos (𝜙)cos (𝜓)sin (𝜃) + sin (𝜙)sin (𝜓)) 

 −
𝑘1

𝑚
𝑥2 + 𝑣1 − 𝑣̂1 − 𝑣̃1 + 𝑑1 − 𝑥̈1𝑑 − 𝜎1𝑣̃1 + 𝑣̃1𝑣̇̃1 

𝑉̇1 = 𝜎1(𝜆1𝑒2  +
𝑈1

𝑚
 (cos (𝜙)cos (𝜓)sin (𝜃) + sin (𝜙)sin (𝜓)) 

 −
𝑘1

𝑚
𝑥2 + 𝑣1 − 𝑣̂1 − 𝑣̃1 + 𝑑1 − 𝑥̈1𝑑 − 𝑣̃1(𝜎1 + 𝑣̇̃1)                    (13) 

Choose the control law such that 𝑉̇1 < 0. Choose 𝑣1 = −
𝑈1

𝑚
 (𝑐𝑜𝑠(𝜙)𝑐𝑜𝑠(𝜓)𝑠𝑖𝑛(𝜃) + 𝑠𝑖𝑛(𝜙)𝑠𝑖𝑛(𝜓)) +

𝑘1

𝑚
𝑥2 + 𝑣̂1 +

𝑥̈1𝑑 − 𝑀1 𝑠𝑖𝑔𝑛(𝜎1) and 𝑣̇̃1 = 𝜎1 − 𝛾 𝑣̃1.   𝐷1 is the maximum value of external disturbance and 𝑀1 is a positive 
constant, 𝑀1 > 𝐷1. The Lyapunov function is written as 

𝑉̇1 = 𝜎1 (−𝑀1 𝑠𝑖𝑔𝑛(𝜎1) + 𝐷1) − 𝑣̃2  <  0 ■                      (14) 

Similarly, the 𝑦-axis equation can be written as: 

𝑦̈ =
𝑈1

𝑚
[𝑐𝑜𝑠(𝜙)𝑠𝑖𝑛(𝜓)𝑠𝑖𝑛(𝜃) + 𝑠𝑖𝑛(𝜙)𝑐𝑜𝑠(𝜓)] −

𝑘2

𝑚
𝑥̇ +  𝑣2 − 𝑣̂2 − 𝑣̃2 + 𝑑2                  (15) 

which can be formulated in state space form as: 

𝑦̇1 = 𝑥2 

𝑦̇2  =
𝑈1

𝑚
 (𝑐𝑜𝑠(𝜙)𝑠𝑖𝑛(𝜓)𝑠𝑖𝑛(𝜃) + 𝑠𝑖𝑛(𝜙)𝑐𝑜𝑠(𝜓)) −

𝑘2

𝑚
𝑦2 + 𝑣2 − 𝑣̂2 − 𝑣̃2 + 𝑑2                 (16) 

Taking 𝑒2  =  𝑦1 − 𝑦1𝑑  and 𝑒̇2 = 𝑦2 − 𝑦̇1𝑑, the error dynamics are defined in Eq. (18). 

𝑒̇3 = 𝑒4 

𝑒̇4 = 𝑦̇2 − 𝑦̈1𝑑                        (17) 

Choose sliding surface 𝜎2 as: 

𝜎2 = 𝜆2𝑒3 + 𝑒4 

𝜎̇2 = 𝜆2 𝑒̇3 + 𝑒̇4 

𝜎̇2 = 𝜆2𝑒4 + 𝑒̇4 

𝜎̇2 = 𝜆2𝑒4 + 𝑥̇4 − 𝑦̈1𝑑                       (18) 

Theorem 3: The control law defined by the equation 

𝑣2 = −
𝑈1

𝑚
 (𝑐𝑜𝑠(𝜙)𝑠𝑖𝑛(𝜓)𝑠𝑖𝑛(𝜃) + 𝑠𝑖𝑛(𝜙)𝑐𝑜𝑠(𝜓)) +

𝑘2

𝑚
𝑦2 + 𝑣̂2 + 𝑦̈1𝑑 − 𝑀2 𝑠𝑖𝑔𝑛(𝜎2) and 𝑣̃2 = 𝜎2 − 𝑣̃2, 

is able to stabilize the nonlinear dynamical subsystem governed by Eqs. 16-18 in if and only if 𝑀2 > 0 and 𝑀2 > 𝐷2. 

Proof 3: Considering the following positive definite Lyapunov candidate function: 

𝑉2 =
1

2
 𝜎2

2 +
1

2
𝑣̃2

2 

𝑉̇2 = 𝜎2𝜎̇2 + 𝑣̃2 𝑣̇̃2 

𝑉̇2 = 𝜎2(𝜆2𝑒4  +
𝑈1

𝑚
 (cos (𝜙)sin (𝜓)sin (𝜃) + sin (𝜙)cos (𝜓)) 

 −
𝑘2

𝑚
𝑦2 + 𝑣2 − 𝑣̂2 − 𝑣̃2 + 𝑑2 − 𝑥̈2𝑑 + 𝑣̃2 𝑣̇̃2 

𝑉̇2 = 𝜎2(𝜆2𝑒4  +
𝑈1

𝑚
 (cos(𝜙) sin(𝜓) sin(𝜃) + sin(𝜙) cos(𝜓)) 

  −
𝑘2

𝑚
𝑦2 + 𝑣2 − 𝑣̂2 − 𝑣̃2 + 𝑑2 − 𝑥̈2𝑑) − 𝜎2𝑣̃2 + 𝑣̃2𝑣̇̃2 

𝑉̇2 = 𝜎2(𝜆2𝑒4  +
𝑈1

𝑚
 (cos (𝜙)sin (𝜓)sin (𝜃) + sin (𝜙)cos (𝜓)) 

 −
𝑘2

𝑚
𝑦2 + 𝑣2 − 𝑣̂2 − 𝑣̃2 + 𝑑2 − 𝑥̈2𝑑) − 𝑣̃2(𝜎2 + 𝑣̇̃2)                     (19) 
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Choose the control law such that 𝑉̇2< 0. Choose 𝑣2 = −
𝑈1

𝑚
 (𝑐𝑜𝑠(𝜙)𝑠𝑖𝑛(𝜓)𝑠𝑖𝑛(𝜃) + 𝑠𝑖𝑛(𝜙)𝑐𝑜𝑠(𝜓)) +

𝑘2

𝑚
𝑦2 + 𝑣̂2 +

𝑦̈1𝑑 − 𝑀2 𝑠𝑖𝑔𝑛(𝜎2)𝑎𝑛𝑑 𝑣̇̃2 = 𝜎2 − 𝑣̃2.  𝐷2 is the maximum value of external disturbance and 𝑀2 is a positive constant, 
𝑀2 > 𝐷2. The Lyapunov function is written as: 

𝑉̇2 = 𝜎2(−𝑀2 𝑠𝑖𝑔𝑛(𝜎2) + 𝐷2) − 𝑣̃2
2 <  0 ■                     (20) 

The UAV altitude controller, u1, is designed to control the position in the z-axis and is independent of the other 
controllers. On the other hand, v1 and v2 are utilized to control the position in the x and y directions, respectively. As 
illustrated in their respective control laws, v1 and v2 are dependent on the control input u1. 

Attitude Controller Design 

According to the governing dynamic equations of the quadrotor UAV, the attitude is controlled by 𝑈2, 𝑈3, and 𝑈4. Taking 
roll angle 𝜙 dynamics: 

𝜙̈ = 𝜃̇ 𝜓̇ (
𝐼𝑦−𝐼𝑧

𝐼𝑥
) +

𝐽𝑟𝜔𝑟

𝐼𝑥
+

𝑙 𝑈2

𝐼𝑥
−

𝑙 𝑘4

𝐼𝑥
𝜙̇                      (21) 

Convert Eq. 21 to state space form: 

𝜙̇1 = 𝜙2 

𝜙̇2 = 𝜃2𝜓2 (
𝐼𝑦−𝐼𝑧

𝐼𝑥
) +

𝐽𝑟𝜔𝑟

𝐼𝑥
+

𝑙 𝑈2

𝐼𝑥
−

𝑙 𝑘4

𝐼𝑥
𝜙2                     (22) 

Defining the error 𝑒7 = 𝜙1 − 𝜙1𝑑 then 𝑒̇7 = 𝜙2 − 𝜙̇1. Hence, the error dynamics can be written as: 

𝑒̇7 = 𝑒8 

𝑒̇8 = 𝜙̇2 − 𝜙̈1𝑑                           (23) 

𝑒̇8 = 𝜃2𝜓2 (
𝐼𝑦−𝐼𝑧

𝐼𝑥
) +

𝐽𝑟𝜔𝑟

𝐼𝑥
+

𝑙 𝑈2

𝐼𝑥
−

𝑙 𝑘4

𝐼𝑥
𝜙2 − 𝜙̈1𝑑                    (24) 

Theorem 4: The control law defined by the equation 

𝑈2 =
𝐼𝑥
𝑙

[−𝑒7 − 𝜃2𝜓2 (
𝐼𝑦 − 𝐼𝑧

𝐼𝑥
) −

𝐽𝑟𝜔𝑟

𝐼𝑥
+

𝑙 𝑘4

𝐼𝑥
𝜙2 − 𝑒8 + 𝜙̈1𝑑] 

is able to stabilize the nonlinear dynamical subsystem governed by Eqs. (21)-(24). 

Proof 4: Select a Lyapunov function that reflects the system’s energy. A common choice for such second-order systems 
is: 

𝑉 =
1

2
 𝑒7

2 +
1

2
𝑣̃8

2                        (25) 

Taking the time derivative of V: 

𝑉̇4 = 𝑒7𝑒̇7 + 𝑒8𝑒̇8 

𝑉̇4 = 𝑒7𝑒̇7 + 𝑒8(𝜙̇2 − 𝜙̈1𝑑) 

𝑉̇4 = 𝑒7𝑒8 + 𝑒8 [𝜃2𝜓2 (
𝐼𝑦 − 𝐼𝑧

𝐼𝑥
) +

𝐽𝑟𝜔𝑟

𝐼𝑥
+

𝑙 𝑈2

𝐼𝑥
−

𝑙 𝑘4

𝐼𝑥
𝜙2 − 𝜙̈1𝑑] 

𝑉̇4 = 𝑒8 [𝑒7 + 𝜃2𝜓2 (
𝐼𝑦−𝐼𝑧

𝐼𝑥
) +

𝐽𝑟𝜔𝑟

𝐼𝑥
+

𝑙 𝑈2

𝐼𝑥
−

𝑙 𝑘4

𝐼𝑥
𝜙2 − 𝜙̈1𝑑]                   (26) 

To ensure stability, a control law U2 is selected such that 𝑉̇4 ≤ 0. A robust control law can be designed to cancel nonlinear 
terms and provide robustness against disturbances. One possible form is: 

𝑈2 =
𝐼𝑥

𝑙
[−𝑒7 − 𝜃2𝜓2 (

𝐼𝑦−𝐼𝑧

𝐼𝑥
) −

𝐽𝑟𝜔𝑟

𝐼𝑥
+

𝑙 𝑘4

𝐼𝑥
𝜙2 − 𝑒8 + 𝜙̈1𝑑]                   (27) 
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Table 1 Quadcopter Parameters. 

Quadcopter 
Parameters 

Value Units 
Quadcopter 
Parameters 

Value Units 

𝑚 0.468 𝑘𝑔 𝐼𝑦 4.856 × 10−3 𝑘𝑔.𝑚2 
𝐽𝑟 3.357 × 10−5 𝑘𝑔.𝑚2 𝐼𝑧 8.801 × 10−3 𝑘𝑔.𝑚2 

𝑘𝑏 3.357 × 10−7 𝑁/(
𝑟𝑎𝑑

𝑠
)
2

 𝑘1, 𝑘2, 𝑘3 0.1 𝑁. 𝑠/𝑟𝑎𝑑 

𝑘𝑡  2.980 × 10−6 𝑁 .𝑚/ (
𝑟𝑎𝑑

𝑠
)
2
 𝑘4, 𝑘5, 𝑘6 0.12 𝑁. 𝑠/𝑟𝑎𝑑 

𝑔 9.8 𝑚/𝑠2 𝐶 1 − 
𝐼𝑥 4.856 × 10−3 𝑘𝑔.𝑚2 𝑙 0.225 𝑚 

Substituting Eq. (27) into Eq. (26) leads to 𝑉̇4 = 𝑒8
2 ≤ 0. Moreover, Eqs. (28) and (29) represent the error dynamics for 𝜃 

and 𝜓. 

𝑒̇9 = 𝑒10 

𝑒̇10  = 𝜃2𝜓2 (
𝐼𝑧−𝐼𝑥

𝐼𝑦
) −

𝜙2 𝐽𝑟𝜔𝑟

𝐼𝑥
+

𝑙 𝑈3

𝐼𝑦
−

𝑙 𝑘5

𝐼𝑥
𝜃2 − 𝜃̈1𝑑                    (28) 

𝑒̇11  = 𝑒12 

𝑒̇12 = 𝜃2𝜙2 (
𝐼𝑥−𝐼𝑦

𝐼𝑧
) +

𝑐 𝑈4

𝐼𝑧
−

𝑙 𝑘6

𝐼𝑥
𝜓2 − 𝜓̈1𝑑                     (29) 

Similar calculation procedures can be conducted for designing the 𝑈3 and 𝑈4 to lead to the equations represented in 
(30) and (31), respectively. 

𝑈3 =
𝐼𝑦

𝑙
[−𝑒9 − 𝜃2𝜓2 (

𝐼𝑧−𝐼𝑥

𝐼𝑦
) +

𝜙2 𝐽𝑟𝜔𝑟

𝐼𝑥
+

𝑙 𝑘5

𝐼𝑥
𝜃2 − 𝑒10 + 𝜃̈1𝑑]                   (30) 

𝑈4 =
𝐼𝑧

𝐶
[−𝑒11 − 𝜃2𝜙2 (

𝐼𝑥−𝐼𝑦

𝐼𝑧
) −

𝑙 𝑘6

𝐼𝑥
𝜓2 − 𝑒12 + 𝜓̈1𝑑]                    (31) 

So far, the design of a nonlinear hybrid control system (Adaptive SMC + Robust Nonlinear Lyapunov) for the quadrotor 
UAV has been completed. 

Table 2 Controller.  Table 3 External Disturbances. 

Parameters Value  Quadcopter Parameters Value Time 

𝜆1 1  𝑑1 2 5<t<10 
𝜆2 1  𝑑2 0.8 5<t<10 
𝜆3 1  𝑑3 3 5<t<10 

𝑀1 3  

 
𝑀2 1  

𝑀3 4  

𝛾 1  

Simulation Results 

In this section, three simulation scenarios, namely, fixed point tracking, take-off tracking, and spiral trajectory tracking, 
are conducted to evaluate the performance of the proposed controller. The system dynamics introduced in Eq. (1) is 
chosen as the virtual experimental plant. A UAV simulation model based on a nonlinear hybrid control technique is 
constructed using a simulation experiment platform, and its performance is experimentally verified. Complex control 
systems can be simulated and analyzed using the platform’s robust modeling and simulation features. Table I lists the 
values for the quadcopter parameters (Abdulkareem et al., 2022), whereas Table II lists the values for the controller 
parameters. The values of 𝑀𝑖  are selected such that they should be equal to or greater than the maximum possible value 
of the external disturbance to guarantee robustness. Furthermore, 𝜆𝑖  values are selected to strike a balance between 
the high convergence speed associated with high λ values and the smooth control input with less significant chattering 
resulting from low λ values. As shown in Table III, the external disturbances are applied from 𝑡 > 5 seconds to 𝑡 < 10 
seconds. 
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Figure 4 Fixed-Point position 𝑥 response curve. Figure 5 Fixed-Point position 𝑦 response curve. 

Fixed-Point Flight Simulation 

The tracking targets in the fixed-point flight simulation are 𝑥1𝑑 = 15,  𝑦1𝑑 = 8, 𝑧1𝑑 = 5, and 𝜓1𝑑=1. Figures 4 to 9 show 
the simulation results of the UAV’s fixed-point flying scenario. These results demonstrate how the proposed approach 
may improve the system’s performance while tracking trajectories. 

Figures 4, 5, and 6 show the position tracking performance of the 𝑥, 𝑦, and 𝑧 coordinates, respectively. The roll angle 
response about the 𝑥-axis is shown in Figure 7. The yaw and pitch are shown in 9 and 8, respectively. Moreover, for the 
case of a fixed-point trajectory, the sliding surfaces are shown in Figure 10. Figure 11 illustrates the control demand to 
achieve the closed-loop response. The chattering problem is not as severe as illustrated in the figure because of the 
relatively acceptable amplitudes of the spikes. 

  
Figure 6 Fixed-Point position 𝑧 response curve.         Figure 7 Fixed-Point position 𝜙 response curve. 

 

 

 
Figure 8 Fixed-Point position 𝜃 response curve.                  Figure 9 Fixed-Point position 𝜓 response curve. 
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Figure 10   Sliding Surfaces for Fixed-Point tracking. Figure 11   Control inputs for Fixed-Point tracking. 

The results demonstrate that the UAV system successfully converges to the desired target values within a finite time. 
Notably, the proposed control strategy significantly enhances the convergence speed and tracking accuracy, as 
evidenced by the rapid stabilization of the system’s states. This highlights the robustness and efficiency of the proposed 
method in achieving stable fixed-point flight for UAVs. 

Take-off Flight Simulation 

In the take-off flight, the tracking target is set to 𝑥1𝑑 = 0, 𝑦1𝑑 = 0, 𝑧1𝑑 =  ℎ [
𝑡

𝑇
](ℎ is the  height of each step, 𝑇 is the 

duration of each step) and 𝜓1𝑑 = 0. These results demonstrate how the proposed approach can enhance the system’s 
trajectory tracking performance. Figures 12, 13, and 14 show the 𝑥, 𝑦, and 𝑧 position tracking, respectively. The roll 
angle dynamics are shown in Figure 15, while Figures 16 and 17 illustrate the yaw and pitch angles. The corresponding 
sliding surfaces and control inputs are displayed in Figures 18 and 19, respectively.  

  
Figure 12 Take-off position 𝑥 response curve.                       Figure 13 Take-off position 𝑦 response curve. 

 

  
Figure 14 Take-off position 𝑧 response curve.                            Figure 15 Take-off Euler angle 𝜙 response curve. 

 



268                                   Mahdi Al Quran, et al. 

  
Figure 16  Take-off Euler angle 𝜃 response curve.                        Figure 17  Take-off Euler angle 𝜓 response curve. 

  

Figure 18   Sliding surface for Take-off tracking.                   Figure 19   Control inputs for Take-off tracking. 

As illustrated in Figures 12 to 19, the simulation data reveal that the UAV system achieves the desired take-off trajectory 
with high precision and minimal overshoot. The proposed control strategy ensures smooth transitions between steps, 
as indicated by the consistent tracking performance across all axes. These results underscore the method’s effectiveness 
in handling dynamic flight scenarios, such as take-off, with enhanced stability and convergence. 

 
 

Figure 20   Spiral Trajectory position 𝑥 response curve.        Figure 21   Spiral Trajectory position 𝑦 response curve. 

Spiral Curve Tracking Simulation 

Spiral ascent is a common flight mode of UAVs. This section assumes that the expected trajectory of quadrotor UAVs is 
a spiral ascent curve, and the desired trajectory is designed as 𝑥1𝑑 = 5𝑐𝑜𝑠(2𝑡), 𝑦1𝑑 = 3𝑠𝑖𝑛(2𝑡), 𝑧1𝑑 = .4𝑡 and 𝜓1𝑑 =
0.2. The results of this section demonstrate how the proposed approach can enhance the system’s performance in 
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tracking trajectories. The simulation results, illustrated in Figures 20 to 28, demonstrate the UAV’s tracking performance 
under this complex trajectory. Figures 20, 21, and 22 show the position tracking along 𝑥, 𝑦, and 𝑧 axes, respectively. The 
roll angle response is shown in Figure 24, while the pitch and yaw responses are shown in Figures 25 and 26, respectively. 
The sliding surfaces and controller inputs for the spiral trajectory are shown in Figures 27 and 28, respectively. 

 
 

Figure 22   Spiral Trajectory position 𝑧 response.                          Figure 23   Spiral trajectory tracking diagram. 

  
Figure 24   Spiral Trajectory Euler angle 𝜙 response.             Figure 25   Spiral Trajectory Euler angle 𝜃 response. 

 

 

Figure 26   Spiral Trajectory angle 𝜓 response.                 Figure 27   Sliding Surfaces for Spiral Trajectory tracking. 
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Figure 28   Control input for spiral trajectory. 

As illustrated in Figures 20 to 28, the results indicate that the UAV system successfully tracks the spiral ascent trajectory 
with high accuracy and minimal deviation. The proposed control strategy exhibits excellent performance in handling the 
nonlinearities and coupling effects inherent in spiral flight, as evidenced by the smooth and consistent tracking across 
all states. This further validates the method’s applicability to complex flight scenarios, ensuring robust and stable 
operation. 

Discussion  

The simulation results presented in the previous section clearly highlight the effectiveness and robustness of the 
proposed control strategy in handling numerous trajectory-tracking missions under different operating envelopes. In 
the fixed-point scenario, the closed-loop system showed rapid convergence to the desired values with minimal 
overshoot and chattering. In fact, these measures can be further optimized using advanced algorithms for tuning the 
controller’s gains. 

In the take-off maneuver, the closed-loop system demonstrated smooth tracking and transition between steps, which 
is crucial for safe vertical ascents. Despite the continuities within the steps in the target altitude, the closed-loop system 
was able to maintain high tracking performance, which reflects the controller’s adaptability even in the presence of 
control input spikes. 

For a more challenging nonlinear and coupled dynamics associated with the spiral trajectory tracking maneuver, the 
proposed controller enabled the UAV to successfully track the 3D spiral trajectory with minimal tracking steady-state 
error. This behavior proves the controller’s ability to handle intricate trajectories in nonlinear regimes effectively. 

The proposed control methodology offers several significant advantages over existing techniques, particularly in terms 
of robustness and comprehensive trajectory tracking. First, while many existing studies neglect external disturbances, 
the robustness of the proposed method has been rigorously validated. Extensive simulations have been conducted to 
demonstrate its effectiveness in the presence of external disturbances for various missions, including fixed-point 
hovering, takeoff, and spiral trajectory tracking. This comprehensive verification is a key strength of the current work, 
as it confirms the controller's ability to maintain stable and accurate performance under challenging conditions. 

Furthermore, the proposed approach addresses several limitations observed in prior research. For instance, the work 
presented in (Kotch et al., 2019) and (Masse et al., 2018) primarily focuses on applying advanced control techniques like 
deep reinforcement learning, LQR, and H∞ to attitude control only. Similarly, reference (Polvara et al., 2018) apply a 
deep reinforcement learning technique exclusively to the specific task of landing control. This work, in contrast, provides 
a unified solution for full quadcopter trajectory tracking, encompassing position and attitude control simultaneously. 

A direct performance comparison with a traditional method, such as the PID controller in (Bayisa and Li, 2019), further 
highlights the superiority of the proposed controller. The results in (Bayisa and Li, 2019) show a settling time of 5.5 
seconds with an overshoot of 3-5% for position tracking. The proposed controller achieves a significantly faster settling 
time of 3.5 seconds and demonstrates zero overshoot, which indicates a more stable and efficient response. 
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Finally, when compared to the nonlinear control method in (Abdulkareem et al., 2022), the controller demonstrates 
superior performance in complex maneuvers. The spiral trajectory tracking presented in (Abdulkareem et al., 2022) 
lacks the precision and accuracy achieved by the proposed method, which successfully tracks the complex path with 
minimal error. This confirms the enhanced capability of the current controller for intricate and dynamic tasks. 

Conclusion 

This paper presented a nonlinear hybrid control strategy for addressing the challenges of low tracking accuracy in 
attitude and position control associated with the quadrotor UAVs. By integrating adaptive sliding mode control with 
Lyapunov theory, the proposed method effectively enhances trajectory tracking performance. While improving 
robustness and flexibility in the presence of external disturbances, the Lyapunov stability theory was utilized to 
rigorously analyze the stability of the control system, and the results confirmed that the proposed controller ensures 
system stability under various operating conditions. Extensive simulation tests demonstrated the effectiveness and 
feasibility of the developed control approach. The simulation results revealed that the proposed method significantly 
improves tracking accuracy for both attitude and position control, outperforming conventional controllers in terms of 
convergence speed and precision. In fact, the ability to quickly and accurately track desired trajectories, even in the 
presence of uncertainties, makes this approach a robust and reliable solution for complex UAV applications. 
Furthermore, the hybrid control strategy demonstrated strong adaptability, making it suitable for diverse operational 
scenarios. It provides a systematic paradigm to handle nonlinearities and disturbances while simultaneously maintaining 
high performance. This makes the proposed method a valuable contribution to the field of UAV control, with potential 
applications in surveillance, delivery, and other advanced aerial operations. Overall, the proposed nonlinear hybrid 
control strategy proves to be an effective tool for improving the performance of quadrotor UAVs, ensuring precise 
trajectory tracking, enhanced robustness, and stability, making it a promising technique for real-world UAV missions. 
Finally, to capture a more realistic physical representation of external disturbances, a future extension of the current 
work is to consider more realistic time-varying disturbance models, such as Dryden gusts or stochastic/harmonic 
models, for improved performance evaluation of the proposed controller. Additionally, to examine the proposed 
controller’s real-world applicability, this work will be extended to incorporate hardware-in-the-loop testing for real-
time, practical validation. 
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