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Abstract 

The Marshall stability and flow of asphalt mixes are key performance indicators of their durability and suitability for use in the 
pavement industry. Achieving the optimal bitumen content and volumetric properties through mix design is critical and depends on 
the characteristics of the materials used. Recycling waste materials in asphalt is also vital for promoting environmental sustainability. 
The development of machine learning models plays a crucial role in predicting the performance of such asphalt mixes. This study 
explores the use of a machine learning approach to predict the performance of waste tyre metal fibre-modified asphalt mixes. A 
dataset consisting of 75 experimental data points from various mix proportions was compiled to train and test the model. The study 
used 60/70 penetration grade bitumen and five modified mixes with waste tyre metal fibre (WTMF) contents of 0%, 0.375%, 0.75%, 
1.125%, and 1.5%. Decision tree regression was effectively employed to establish the relationship between the input variables. The 
predictive ability of the model was assessed using R-squared, adjusted R-squared, and mean absolute error. The input parameters 
included fibre content, bitumen content, aggregate percentage, and porosity. Analysis of the input variables showed that stability 
decreased while flow increased with higher fibre and bitumen contents. With an R² of 0.901 for training and 0.937 for testing phases, 
decision tree regression proved to be an effective model for predicting the performance of these modified asphalt mixes. 

Keywords: asphalt mixes; decision tree; flow; marshall stability; metal fibre. 
 

 

Introduction 

Asphalt has long been one of the most prevalent composite materials used in pavement construction worldwide (Ruiz-
Riancho et al., 2021; Wu et al., 2022; Yang et al., 2021). With growing emphasis on sustainability in construction, 
innovations in asphalt technology are being implemented to align with green construction goals, meet diverse functional 
demands, and adapt to global price fluctuations (C. Yang et al., 2022; Yousif et al., 2022). Conventionally, asphalt 
functions as an insulating material with high electrical resistance, making it non-conductive by nature (Notani et al., 
2019). However, traditional pavements can be transformed into smart, multifunctional systems by incorporating specific 
additives into asphalt mixes, enabling the creation of advanced asphalt concrete with enhanced properties (Zadri et al., 
2022). These additives not only improve the electrical properties of asphalt but also preserve its core mechanical load-
bearing capabilities (Rew et al., 2017; Arsalaan Khan Yousafzai, Muslich Hartadi Sutanto, Muhammad Imran Khan, et al., 
2024). 
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A significant innovation is piezoresistive asphalt, which enables the real-time tracking of loads and pavement defects. 
Recent studies have emphasized the wide range of applications and advantages of electrically conductive asphalt and 
concrete mixtures (ECAM/ECAC). These include detecting early damage through strain sensing, monitoring traffic, aiding 
autonomous vehicle navigation, assessing pavement damage, supporting truck weigh-in-motion systems, monitoring 
structural health, enabling non-destructive testing, promoting self-healing of microcracks, facilitating deicing for winter 
maintenance, enabling rapid pothole repairs, reducing noise, and harnessing energy via piezoelectric mechanisms 
(Abdualla et al., 2017). These advancements underscore the potential for further exploration and innovation in this field 
(Rizvi et al., 2016). 

The selection of suitable additives to impart conductivity to asphalt is a critical consideration (Li et al., 2022). Asphalt's 
conductivity depends on the formation of a conductive network within the mix, which is influenced by the additive's 
geometry, composition, and concentration. Recycling industrial and household waste materials offers a dual advantage 
of improving the electrical properties of asphalt while addressing environmental sustainability challenges in pavement 
engineering (Ruidong et al., 2021). Researchers have employed various additives—fibre-based, binder-based, and 
granule-based, as well as their combinations—to enhance electrical conductivity and enable self-healing capabilities in 
asphalt mixes. Additives can also be classified by material type (carbon-based or metallic) (Hasan et al., 2021), size (nano, 
micro, or macro) (H. Yang et al., 2022), or form (powders, fibres, or solid particles) as noted by Chen et al. (Chen et al., 
2019). Another categorization divides modifiers into polymer modifiers, chemical modifiers, adhesion/anti-stripping 
agents, and fibre additives. Commonly used conductive additives include carbon fibre, steel fibre, aluminium fibre, steel 
wool (Karimi et al., 2020), carbon nanotubes (Y. Liu et al., 2021), graphene (H. Yang et al., 2022), graphite powder, 
carbon black, nickel powder, iron tailings (Ullah et al., 2021), copper slag (Fakhri et al., 2020), coke (Rizvi et al., 2016), 
and metallic shavings (Fakhri et al., 2020; Karimi et al., 2021; Messaoud et al., 2022; Ullah et al., 2021; A. K. Yousafzai et 
al., 2024). 

This study investigates the effects of incorporating waste tyre metal fibre (WTMF) as a modifier in asphalt mixtures. 
Fibre proportions (0.375%, 0.75%, 1.125%, and 1.5%) and bitumen contents (4%, 4.5%, 5%, 5.5%, and 6%) were 
systematically varied, guided by prior research from Luana et al. (Schuster et al., 2023), Hanwen et al. (H. Yang et al., 
2022), Ying-Yuan et al. (Y.-Y. Wang et al., 2022), Lusheng Wang et al. (L. Wang et al., 2022), Shafi Ullah et al. (Ullah et 
al., 2022), Messaoud et al. (Messaoud et al., 2022), Zhenxia Li et al. (Li et al., 2022), Jia-Liang Le et al. (Le et al., 2022), 
Cahit Gürer et al. (Gürer, Fidan, et al., 2022) and (Gürer, Düşmez, et al., 2022), Zejiao Dong et al. (Dong et al., 2022), and 
Liping Cao et al. (Cao et al., 2022). The goal was to develop a computational model capable of predicting Marshall mix 
design parameters using data from 75 laboratory-tested Marshall specimens with varying fibre and bitumen contents. 
The study leverages a decision tree (DT) algorithm with input variables including fibre and bitumen content, porosity, 
and aggregate percentage. Model performance was assessed using statistical tools such as the coefficient of 
determination (R²), adjusted R² (R̅²), and mean absolute error (MAE). The results indicate that adding metal fibres to 
asphalt could greatly improve pavement performance and provide high piezoresistivity, opening the door to potential 
self-sensing applications in future smart infrastructure. 

Literature Review 

Metallic Additives in Asphalt 

Various metallic additives, including steel fibre, iron tailings, and metal shavings, have been explored for asphalt 
modification. These materials include steel, iron tailing, magnetite, carbonyl iron powder, copper wire, aluminium metal 
fibres, and steel slag (Chen & Balieu, 2020; Shishegaran et al., 2020; A. K. Yousafzai et al., 2024). Additives in this category 
have been found to retain electro-mechanical damage sensing abilities even after the initial cracking (within the linear 
elastic range). Steel fibre is one of the most commonly used additives in asphalt. A single steel fibre has a tensile strength 
of approximately 502 MPa, significantly surpassing that of asphalt concrete. Its electrical conductivity is quite high at 
7.0x10⁻⁵ Ω-m, though its potential for conductivity improvement is lower compared to carbon-based materials (Chen & 
Balieu, 2020). Additionally, it is reported that this additive undergoes uneven heating, leading to asphalt with reduced 
durability (Chen et al., 2019). Metal fibres derived from waste tires have also been found to increase the air voids (AV) 
content and lower the bulk density of asphalt mixtures. Additionally, they are prone to oxidation (i.e., less corrosion-
resistant) and are chemically incompatible with asphalt materials (L. Liu et al., 2021). These drawbacks make metallic 
materials less desirable compared to carbon-based additives. Steel-based conductive additives come in different sizes, 
with lengths ranging from 1 to 9 mm and diameters between 6 and 20 mm (Chen & Balieu, 2020). One common form 
of steel wool fibre (SWF), made from virgin materials, is used to improve the electrical conductivity of asphalt and 
enhance its crack-healing properties (Karimi et al., 2020). Conversely, metal shavings, a waste product from metal 
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industries, can be used as a substitute for SWF (González et al., 2018). A research study found that the use of centimetre-
level SWF resulted in lower mechanical performance with localized electrical conductivity. However, in contrast, 
Hanwen et al. (H. Yang et al., 2022) reported that SWF-modified asphalt mixtures exhibited good electrical conductivity, 
thereby demonstrating self-healing capabilities. Heopeng et al. (Wang et al., 2016) observed significant improvements 
in Marshall Stability (MS), tensile strength, and rutting resistance in asphalt specimens modified with SWF. This 
enhancement was attributed to the even distribution of steel fibres, which create a complex 3D structure that allows 
the asphalt to transfer more stress. Iron tailings, a commonly underused byproduct of the iron ore extraction process, 
are produced during beneficiation. 

Earlier studies have mainly concentrated on enhancing the piezoresistive properties of asphalt mixtures while 
preserving the essential mechanical performance parameters. However, predicting these properties is more difficult 
due to the complex interactions between Marshall parameters, asphalt components, and various additives. With 
advancements in high-tech computing, machine learning algorithms have become increasingly reliable and robust, 
capable of accurately predicting outcomes. These algorithms can be especially valuable when applied to the 
development of sustainable, smart asphalt manufacturing. Therefore, this study explores the use of machine learning 
algorithms to predict the Marshall parameters of modified asphalt mixes containing varying contents of optimized 
bitumen, aggregates, and waste tyre metal fibre in different mix ratios. 

Machine Learning in Pavement Engineering 

Machine learning methods have revolutionized predictive modelling in civil engineering. Techniques such as artificial 
neural networks, support vector machines, and decision trees enable accurate predictions of asphalt performance 
metrics. A study by Leon et al. (Leon & Gay, 2019) assessed the impact of aggregate angularity on the permanent 
deformation of asphalt mixtures using GEP. The researchers prepared a total of 98 samples in the laboratory, 
incorporating different percentages of angular, sub-angular, rounded, and sub-rounded aggregates. Awan et al. (Awan 
et al., 2022) used multi-expression programming to evaluate the MS and MF parameters, utilizing datasets consisting of 
253 samples for asphaltic base course and 343 samples for asphaltic wearing course, respectively. Khan et al. (Khan et 
al., 2023) developed the relationship between the water-cement ratio, superplasticizer, flow, 1-day, and 7-days 
compressive strength to predict the 28-days compressive strength of semi flexible pavement using artificial neural 
network (ANN). Upadhya et al. (Upadhya et al., 2022) adopted ANN, random tree (RT), RF, and adaptive neuro-fuzzy 
inference system (ANFIS) for predicting MS of glass fibre-modified asphalt concrete. ANN and least square support 
vector machine (LS-SVM) were adopted by Khuntia et al. (Khuntia et al., 2014) to predict the Air Voids (AV), MS and MF 
of waste polyethylene (PE)-modified bituminous mixtures. Nyirandayisabye et al. (Nyirandayisabye et al., 2022) used 
SVR, linear regression (LR), KNN, RF, Light Gradient Boosted Machine (LGBM), Gradient Boosting Regressor (GBR), DT 
regressor, and stacking regressor to access the pavement damage and distress quality. Ridge regression, lasso 
regression, LR, SVR, KNN, ANN, DT, RF, AdaBoost, voting regressor, XGBoost, gradient boost and cat-boost were adopted 
by Pal et al. (Pal et al., 2023) to predict the compressive strength of rubber and recycled aggregate modified fibre-
reinforced concrete.  

DT regression, known for its simplicity and interpretability, is particularly effective for mapping relationships between 
variables and identifying influential factors in material performance. DTs are primarily composed of leaves, branches, 
and roots (Nitsche et al., 2014). The decision tree model is simple to understand, interpret, and visualize, and it is one 
of the simplest methods for determining linkages between variables and the most essential variable (Zhao & Zhang, 
2008). It is important to note that Decision Tree Regressors (DTRs) come in various types, including basic, thorny, and 
intermediate trees. The key difference between them lies in the size of the smallest leaf. A decision tree consists of 
branches, nodes, leaves, and other components. The tree divides the nodes into sub-nodes based on various factors 
and selects the split that results in the most homogeneous sub-nodes. The prediction outcome is derived from the leaf 
at the end of the path. DTRs have been successfully utilized by researchers across a wide range of applications (Karbassi 
et al., 2014). 

Materials and Methodology 

The aim of this research was to apply the decision tree machine learning algorithm to evaluate the Marshall performance 
parameters of waste tyre metal fibre (WTMF) modified asphalt mixes. The experimental process was divided into several 
stages, each focused on achieving a specific goal. The first stage involved determining the Optimum Bitumen Content 
(OBC) for both control samples and each modified mixture with a specified WTMF content. The input parameters 
included fibre content, bitumen content, aggregate percentage, and porosity. The next step was to develop an algorithm 

https://www.sciencedirect.com/topics/engineering/bituminous-mixture
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capable of optimizing the mix parameters. Finally, various statistical tools were used to evaluate the performance of the 
developed models. 

Materials and Specimens Preparation 

The research was conducted using locally available construction materials from Perak, Malaysia. Aggregates were 
sourced from Sunway Quarry Industries Sdn Bhd, and the bitumen chosen was 60/70 penetration grade, based on its 
widespread use in Malaysia. Waste Tyre Metal Fibre (WTMF), shown in Figure 1, was used as the primary electrically 
conductive additive in this study. The WTMF had dimensions ranging from 3 to 9 mm in length and a diameter of 0.1 
mm. The metal fibre content was selected to align with previous research studies while also addressing issues such as 
agglomeration and improper mixing and compaction that can occur at higher fibre contents. Additionally, the Marshall 
mix design used in this research follows the standard specifications set by JKR (Public Works Department of Malaysia) 
(Standard Specification for Road Works - Section 4: Flexible Pavement, 2008). Asphaltic concrete with a maximum 
nominal aggregate size of 14 mm (AC-14) was used for aggregate gradation and the preparation of asphalt mixture 
samples, representing the wearing course of the pavement. The aggregates were initially sieved through the required 
sizes to achieve the appropriate combinations based on particle size. 

 

 Waste tyre metal fibre used in this research. 

The Marshall mix design procedure was used to determine the optimum mix proportions for this study. The first step 
was to determine the optimum bitumen content (OBC), which is aimed at optimizing the amount of bitumen for a 
specific type of mix to achieve a durable composition. The OBC was determined for both the controlled mix and the 
WTMF-modified mixes according to the procedure outlined by the Asphalt Institute. It is important to note that the OBC 
for each mix series varied due to different WTMF contents in each series. Marshall specimens, 100 mm in diameter and 
65 mm in height, were produced following ASTM D6926-20. A total of 1200 gm of blended aggregates were added to 
the bitumen mixture, along with the selected amount of WTMF additive, to prepare each Marshall specimen. Each 
mixture was composed of 44% coarse aggregates, 50% fine aggregates, and 6% mineral filler. The aggregates were first 
heated in an oven at 140-160°C to eliminate all moisture. For uniform blending, the fibres were gradually added during 
the dry mixing of the oven-dried aggregates with the pre-determined optimum bitumen content. The mixture was then 
transferred into pre-heated specimen moulds with a 100 mm diameter and 63.5 mm height to maintain the 
temperature. The inside of the moulds was greased, and paper filters were placed on both the top and bottom surfaces 
to prevent the compacted mix from adhering to the mould. The filled moulds were placed in a Marshall compactor, 
where 75 blows were applied to each face of the specimen for compaction. After compaction, the specimens were 
extruded from the moulds and left to cool at room temperature overnight. These samples were then tested for Marshall 
stability, flow, and volumetric properties. 

Experimental Design 

Marshall Stability and Flow are essential tests for evaluating the resistance of bituminous mixtures to deformation and 
their ability to withstand continuous traffic loads. Marshall stability reflects the tensile strength of the asphalt mixture, 
indicating its capacity to resist rutting at high service temperatures. In contrast, flow measures the rutting resistance by 
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showing the permanent strain that occurs at failure during the test. A total of 75 Marshall samples were prepared, 
including both control and WTMF-modified series (from Series A to Series D). These samples were made by mixing JKR 
graded aggregate with 60/70 penetration grade bitumen and the desired WTM fibre content. The fibre was incorporated 
directly into the aggregate-bitumen mixture during dry mixing. For compaction, all samples received 75 blows per 
diametrical face using the standard Marshall compaction hammer. The equipment used in this study is shown in Figure 
2 (a and b), with testing conducted at a continuous loading/deformation rate of 50.8 mm/min at 60 °C. The maximum 
load at failure was recorded as Marshall stability (kN). The specimens were conditioned in a water bath at 60 °C for 25-
30 minutes to simulate service temperatures. 

 

 
(a) 

 
 

(b) 

  (a) Positioning of the sample in the digital Marshall testing machine. (b) Close-up view of the installed sample. 

Model development 

Machine learning now plays a crucial role in automating simulations, helping researchers reduce the need for extensive 
laboratory testing. Several methods are available to map the relationship between inputs and predict target outputs 
based on real-world data. This study utilizes a Decision Tree (DT) regressor implemented in Python programming to 
predict the Marshall Stability (MS) and Marshall Flow (MF) of fibre-modified asphalt mixes prepared in the laboratory. 
The performance of the model was evaluated using various statistical tools, with the best-performing model being 
selected. This model was also used to assess the importance of each input variable in predicting the output variables. 
Additionally, the model will be employed to evaluate outcomes based on combinations that were not directly tested in 
the laboratory. 

MS and MF models were developed using 75 datapoints, with 80% allocated for training and 20% for testing. A decision 
tree regressor was applied to create the model, using input variables such as aggregate percentage, asphalt content, 
fibre content, and porosity. The model's performance was evaluated using R-Square, Adjusted R-Square, and Mean 
Absolute Error (MAE) (Eqs. (1) to (3)). The best-performing model based on training data was selected for determining 
the optimal combination of input variables and assessing the importance of each variable in output prediction. A 
detailed performance summary of the model can be found in Table 1.  

𝑅2 = 1 −  
∑ (𝑌̂𝑖−𝑌̅)𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)𝑛
𝑖=1

            (1) 

𝐴𝑑𝑗. 𝑅2 = 1 − (
(1−

∑ (𝑌̂𝑖−𝑌̅)𝑛
𝑖=1

∑ (𝑦𝑖−𝑦̅)𝑛
𝑖=1

)(𝑛−1)

(𝑛−𝑝−1)
)           (2) 

MAE =
1

n
∑ |yi−Ŷi|

n
i=1             (3) 

In the above equations, 𝑦𝑖 , 𝑌𝑖̂ are the actual and predicted output, 𝑦̅, 𝑌̅ are the mean values of actual and predicted 
outputs and, n and p, are the number of observation and input variables, respectively.    
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Table 1 Model's performance in training and testing phases. 

Decision Tree Model 

 Training Testing 

MAE 0.421 0.259 
R-Square 0.901 0.937 

Adj. R-Square 0.897 0.927 

Results 

Based on the experimental data, bitumen content, aggregate percentage, fibre content, and porosity were selected as 
input variables, while MS and MF were chosen as output variables, with the decision tree regressor applied using Python 
programming. To ensure the dataset had no missing values, k-nearest neighbours was used to fill any missing values by 
substituting them with the closest values from the five nearest neighbours on either side. Figures 3 and 4 display the 
distribution of MS and MF in relation to fibre content, with five different percentages of fibre content (including the 
control) being investigated in this study. Each subplot in these figures represents a specific proportion of fibre content, 
showing the mean, first quartile, third quartile, and lower and upper limits for both MS and MF. The data points are 
evenly distributed around the mean value for each fibre content percentage. To confirm normality, an outlier check was 
performed, which identified two MS data points above the upper limit, leading to their removal from the dataset. Details 
of the outlier check can be found in Table 2 and Figure 5. 

 

 Marshall stability distribution against additive content. 

 

 Marshall flow distribution against additive content. 
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  (a & b) Marshall stability and flow distribution before outlier check. (a’ & b’) Marshall stability and flow 
distribution after performing the outlier check. 

Table 2 Outlier check. 

 Q1* Q2* Q3* IQR** Lower limit Upper Limit Outliers 

MS (kN) 10.609 12.525 14.535 3.925 4.721 20.423 23.044, 22.190 

MF (mm) 3.134 3.637 4.301 1.167 1.383 6.052 None 
*Q1, Q2 & Q3 = 1st, 2nd, and 3rd quartile. 
**IQR = inter quartile range 

After this, Pearson correlation coefficient was computed between the input and output variables using equation 4. From 
Table 3, skewness for all the variables falls within the range of normal distribution (-0.5 to 0.5) except for stability which 
is 0.95 which means the values of MS are slightly positively skewed. Based on kurtosis, it can be concluded that all the 
variables have significant peaks which are close to normal distribution. Details of the data distribution and correlation 
can be seen in Table 3 and Figure 6. In the figure, intense colours represent strong correlation, whether positive or 
negative, whereas lighter colours represent weak correlation.  

Table 3 Descriptive statistics of the dataset (Arsalaan Khan Yousafzai, Muslich Hartadi Sutanto, Nasir Khan, et al., 2024). 

Parameter Additive Content (%) Aggregate (%) Binder Content (%) Porosity (%) Stability (kN) Flow (mm) 

Count 75 75 75 75 75 75 
Mean 0.75 95.00 5.00 4.29 12.86 3.72 

St. Dev. 0.53 0.71 0.71 1.63 3.03 0.73 
Min. 0.00 94.00 4.00 0.63 8.25 2.40 
Max. 1.50 96.00 6.00 7.99 23.04 5.40 

Skewness 0.00 0.00 0.00 -0.32 0.95 0.29 
Kurtosis -1.31 -1.31 -1.31 -0.32 1.36 -0.83 



310                                                                                                                                  Arsalaan Khan Yousafzai et al. 

 

 

 Variable’s correlation matrix. 

𝐶𝐽−𝐾 =
𝛴(𝐽𝑖−𝐽)̅(𝐾𝑖−𝐾 )

√𝛴(𝐽𝑖−𝐽)̅2  √𝛴(𝐾𝑖−𝐾)2 
            (4) 

In this equation, CJ-K is the correlation of variable J with variable K, Ji, Ki is the ith entry of variables J and K, and J,̅ K̅ are 
the mean values of variables J and K.  

These results align with the study’s objective to evaluate the impact of varying WTMF and bitumen contents on the 
mechanical performance of asphalt mixes. The reduction in stability indicates a trade-off between enhanced 
conductivity and mechanical durability, emphasizing the importance of balance in mix design. Conversely, the increase 
in flow suggests improved flexibility and potential deformation resistance, which are desirable traits in certain 
applications. By quantifying these effects, the decision tree model provides actionable insights into optimizing WTMF-
modified asphalt compositions. 

Discussion 

The Decision Tree (DT) model was employed to map various input variable values to evaluate the Marshall Stability (MS) 
and Marshall Flow (MF). The direct laboratory results for MS and MF in this study were limited to specific combinations. 
The machine learning model was utilized to predict values that were not directly estimated in the laboratory. 
Specifically, MS and MF values were predicted for fibre contents of 0.5%, 1%, and 1.75%, with bitumen content ranging 
from 4% to 6%. The analysis revealed that MS decreases with increasing fibre and bitumen content, while MF increases 
with both variables. The sensitivity of MS to changes in fibre and bitumen content remained nearly constant. However, 
MF demonstrated different reactions to variations in these inputs. The influence of bitumen content on MF was less 
pronounced at lower fibre content levels but became more significant as fibre content increased. Detailed predictions 
of the model can be seen in Figures 7 and 8, where it can be observed that the MS decreases with increases in both 
WTMF and bitumen content, while the flow increases with increase in WTMF and bitumen content. Additionally, it was 
found that the impact of binder content on flow was less pronounced with lower WTMF content, whereas the effect 
became more significant as the WTMF content increased. According to the prediction model, there is a 17% reduction 
in MS when the WTMF content is increased from 0.375% to 1.75% at 4% binder content. Similarly, there is 24% reduction 
in MS when the WTMF content is increased from 0.375% to 1.75% at 6% binder content. For flow predictions, there is 
11% increase when WTMF content is increased from 0.375% to 1.75% at 4% binder content, 32% increase when WTMF 
content is increased from 0.375% to 1.75% at 6% binder content. 



Decision tree machine learning approach for the performance prediction of asphalt mixes modified    311 
DOI: 10.5614/j.eng.technol.sci.2025.57.3.2 
 

  
 

 

 Effect of fibre content and bitumen content on Stability. 

 

 Effect of fibre content and bitumen content on flow. 

These outcomes underscore the importance of systematically analysing the interplay between material components to 
meet performance requirements while supporting sustainability goals. The study’s methodology and results contribute 
to the growing body of knowledge on machine learning applications in civil engineering, showcasing the practical utility 
of predictive models in material optimization. 

Conclusions 

The study explores the use of decision tree algorithm for developing a relationship between the four input variables 

(i.e., fibre content, bitumen content, aggregate percentage, and porosity) to predict the MS and MF based on a dataset 

consisting of results of 75 experiments performed in laboratory. Mapping the relationship between input variables 

using DT regressors was successfully performed. The predictive power of the model was assessed by R-Square, 

Adjusted R-Square, and MAE. R2 recorded for the model was 0.937 for testing data. The established correlation 

underscores the possibility of using this machine learning model for successfully predicting the performance 

parameters for the modified mixes. Based on the model’s predictions, it was also concluded that the effect of bitumen 

content on flow values is stronger at higher percentages of fibre content as compared to lesser fibre content. In 

conclusion, this research work investigates an alternative state-of-art method to assess and predict the MS and MF of 

the WTMF-modified mixes. Such modified mixes can also contribute to recycling and reuse of waste material to reduce 

the environmental impact. This study confirms the effectiveness of decision tree regression for predicting the 

performance of WTMF-modified asphalt mixes. Incorporating WTMF not only improves functionality but also supports 

environmental sustainability. Future research should explore additional machine learning techniques and larger 

datasets to further validate these findings. Further research and validation can be done in the future to refine and 

expand the findings that would ultimately advance the machine learning predictive practices in the pavement industry. 



312                                                                                                                                  Arsalaan Khan Yousafzai et al. 

 

Acknowledgments 

The authors appreciate and acknowledge the support received from Universiti Teknologi PETRONAS, Malaysia, and the 
Higher Education Commission, Pakistan, in the development of this study. 

Compliance with ethics guidelines   

The authors declare they have no conflict of interest or financial conflicts to disclose. 

This article contains no studies with human or animal subjects performed by authors. 

References 

Abdualla, H., Ceylan, H., Kim, S., Mina, M., Gopalakrishnan, K., Sassani, A., Taylor, P. C., & Cetin, K. S. (2017). 
Configuration of Electrodes for Electrically Conductive Concrete Heated Pavement Systems Airfield and 
Highway Pavements 2017.  https://ascelibrary.org/doi/abs/10.1061/9780784480946.001 

Awan, H. H., Hussain, A., Javed, M. F., Qiu, Y., Alrowais, R., Mohamed, A. M., Fathi, D., & Alzahrani, A. M. (2022). 
Predicting Marshall Flow and Marshall Stability of Asphalt Pavements Using Multi Expression Programming. 
Buildings, 12(3), 314. https://doi.org/10.3390/buildings12030314 

Cao, L., Zhou, J., Zhou, T., Dong, Z., & Tian, Z. (2022). Utilization of iron tailings as aggregates in paving asphalt mixture: 
A sustainable and eco-friendly solution for mining waste. Journal of Cleaner Production, 375, 134126. 
https://doi.org/10.1016/j.jclepro.2022.134126  

Chen, F., & Balieu, R. (2020). A state-of-the-art review of intrinsic and enhanced electrical properties of asphalt 
materials: Theories, analyses and applications. Materials & Design, 195, 109067. 
https://doi.org/10.1016/j.matdes.2020.109067  

Chen, Z., Liu, R., Hao, P., Li, G., & Su, J. (2019). Developments of Conductive Materials and Characteristics on Asphalt 
Concrete: A Review. ASTM Journal of Testing and Evaluation, 48(3), 2144–2161. 
https://doi.org/10.1520/JTE20190179  

Dong, Z., Ullah, S., Zhou, T., Yang, C., Luan, H., & Khan, R. (2022). Self-Monitoring of Damage Evolution in Asphalt 
Concrete Based on Electrical Resistance Change Method. ASTM Journal of Testing and Evaluation, 50(5), 
2698–2717. https://doi.org/10.1520/JTE20220037  

Fakhri, M., Bahmai, B. B., Javadi, S., & Sharafi, M. (2020). An evaluation of the mechanical and self-healing properties 
of warm mix asphalt containing scrap metal additives. Journal of Cleaner Production, 253, 119963. 
https://doi.org/10.1016/j.jclepro.2020.119963  

González, A., Norambuena-Contreras, J., Storey, L., & Schlangen, E. (2018). Self-healing properties of recycled asphalt 
mixtures containing metal waste: An approach through microwave radiation heating. Journal of 
Environmental Management, 214, 242–251. https://doi.org/10.1016/j.jenvman.2018.03.001  

Gürer, C., Düşmez, C., & Boğa, A. R. (2022). Effects of different aggregate and conductive components on the 
electrically conductive asphalt concrete's properties. International Journal of Pavement Engineering, 24(1), 
2068547. https://doi.org/10.1080/10298436.2022.2068547  

Gürer, C., Fidan, U., & Korkmaz, B. E. (2022). Investigation of using conductive asphalt concrete with carbon fiber 
additives in intelligent anti-icing systems. International Journal of Pavement Engineering, 24(1), 2077941. 
https://doi.org/10.1080/10298436.2022.2077941  

Hasan, R., Ali, A., Decarlo, C., Elshaer, M., & Mehta, Y. (2021). Laboratory Evaluation of Electrically Conductive Asphalt 
Mixtures for Snow and Ice Removal Applications. Transportation Research Record, 2675(8), 48–62. 
https://doi.org/10.1177/0361198121995826  

Karbassi, A., Mohebi, B., Rezaee, S., & Lestuzzi, P. (2014). Damage prediction for regular reinforced concrete buildings 
using the decision tree algorithm. Computers & Structures, 130, 46–56. 
https://doi.org/10.1016/j.compstruc.2013.10.006  

Karimi, M. M., Amani, S., Jahanbakhsh, H., Jahangiri, B., & Alavi, A. H. (2021). Induced heating-healing of conductive 
asphalt concrete as a sustainable repairing technique: A review. Cleaner Engineering and Technology, 4, 
100188. https://doi.org/10.1016/j.clet.2021.100188  

Karimi, M. M., Darabi, M. K., Jahanbakhsh, H., Jahangiri, B., & Rushing, J. F. (2020). Effect of steel wool fibers on 
mechanical and induction heating response of conductive asphalt concrete. International Journal of 
Pavement Engineering, 21(14), 1755–1768. https://doi.org/10.1080/10298436.2019.1567918  

Khan, M. I., Khan, N., Hashmi, S. R. Z., Yazid, M. R. M., Yusoff, N. I. M., Azfar, R. W., Ali, M., & Fediuk, R. (2023). 
Prediction of compressive strength of cementitious grouts for semi-flexible pavement application using 



Decision tree machine learning approach for the performance prediction of asphalt mixes modified    313 
DOI: 10.5614/j.eng.technol.sci.2025.57.3.2 
 

  
 

machine learning approach. Case Studies in Construction Materials, 19, e02370. 
https://doi.org/10.1016/j.cscm.2023.e02370  

Khuntia, S., Das, A. K., Mohanty, M., & Panda, M. (2014). Prediction of Marshall Parameters of Modified Bituminous 
Mixtures Using Artificial Intelligence Techniques. International Journal of Transportation Science and 
Technology, 3(3), 211-227. https://doi.org/https://doi.org/10.1260/2046-0430.3.3.211  

Le, J.-L., Marasteanu, M., Matias De Oliveira, J., Calhoon, T., Turos, M., & Zanko, L. (2022). Investigations of electrical 
conductivity and damage healing of graphite nano-platelet (GNP)-taconite modified asphalt materials. Road 
Materials and Pavement Design, 23(sup1), 196–207. https://doi.org/10.1080/14680629.2022.2050784  

Leon, L. P., & Gay, D. (2019). Gene expression programming for evaluation of aggregate angularity effects on 
permanent deformation of asphalt mixtures. Construction and Building Materials, 211, 470-478. 
https://doi.org/https://doi.org/10.1016/j.conbuildmat.2019.03.225  

Li, Z., Guo, T., Chen, Y., Lu, Y., Niu, X., Yang, X., & Jin, L. (2022). Study on Road Performance and Electrothermal 
Performance of Poured Conductive Asphalt Concrete. Advances in Materials Science and Engineering, 2022, 
2462126. https://doi.org/10.1155/2022/2462126  

Liu, L., Zhang, X., Xu, L., Zhang, H., & Liu, Z. (2021). Investigation on the piezoresistive response of carbon fiber-graphite 
modified asphalt mixtures. Construction and Building Materials, 301, 124140. 
https://doi.org/10.1016/j.conbuildmat.2021.124140  

Liu, Y., Liao, H., Fang, Z., & Huang, X. (2021). The Thermoelectric Effect and High-Temperature Characteristics of 
Carbon Nanotubes Modified Asphalt Concrete 21st COTA International Conference of Transportation 
Professionals (CICTP 2021), Xi’an, China. https://ascelibrary.org/doi/abs/10.1061/9780784483565.081 

Messaoud, M., Glaoui, B., & Abdelkhalek, O. (2022). The Effect of Adding Steel Fibers and Graphite on Mechanical and 
Electrical Behaviors of Asphalt Concrete [Research Articles]. Civil Engineering Journal, 8(2), 348–361. 
https://doi.org/10.28991/CEJ-2022-08-02-012  

Nitsche, P., Stütz, R., Kammer, M., & Maurer, P. (2014). Comparison of Machine Learning Methods for Evaluating 
Pavement Roughness Based on Vehicle Response. Journal of Computing in Civil Engineering, 28(4), 04014015. 
https://doi.org/https://doi.org/10.1061/(ASCE)CP.1943-5487.0000285  

Notani, M. A., Arabzadeh, A., Ceylan, H., Kim, S., & Gopalakrishnan, K. (2019). Effect of Carbon-Fiber Properties on 
Volumetrics and Ohmic Heating of Electrically Conductive Asphalt Concrete. Journal of Materials in Civil 
Engineering, 31(9), 04019200. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002868  

Nyirandayisabye, R., Li, H., Dong, Q., Hakuzweyezu, T., & Nkinahamira, F. (2022). Automatic pavement damage 
predictions using various machine learning algorithms: Evaluation and comparison. Results in Engineering, 
16, 100657. https://doi.org/https://doi.org/10.1016/j.rineng.2022.100657  

Pal, A., Ahmed, K. S., Hossain, F. Z., & Alam, M. S. (2023). Machine learning models for predicting compressive strength 
of fiber-reinforced concrete containing waste rubber and recycled aggregate. Journal of Cleaner Production, 
423, 138673. https://doi.org/https://doi.org/10.1016/j.jclepro.2023.138673  

Rew, Y., Baranikumar, A., Tamashausky, A. V., El-Tawil, S., & Park, P. (2017). Electrical and mechanical properties of 
asphaltic composites containing carbon based fillers. Construction and Building Materials, 135, 394–404. 
https://doi.org/10.1016/j.conbuildmat.2016.12.221  

Rizvi, H. R., Khattak, M. J., Madani, M., & Khattab, A. (2016). Piezoresistive response of conductive Hot Mix Asphalt 
mixtures modified with carbon nanofibers. Construction and Building Materials, 106, 618–631. 
https://doi.org/10.1016/j.conbuildmat.2015.12.187  

Ruidong, W., Yu, S., Juanhong, L., Linian, C., Guangtian, Z., & Yueyue, Z. (2021). Effect of Iron Tailings and Slag Powders 
on Workability and Mechanical Properties of Concrete [Original Research]. Frontiers in Materials, 8, 723119. 
https://doi.org/10.3389/fmats.2021.723119  

Ruiz-Riancho, N., Saadoon, T., Garcia, A., Grossegger, D., & Hudson-Griffiths, R. (2021). Optimisation of self-healing 
properties for asphalts containing encapsulated oil to mitigate reflective cracking and maximize skid and 
rutting resistance. Construction and Building Materials, 300, 123879. 
https://doi.org/10.1016/j.conbuildmat.2021.123879  

Schuster, L., Staub de Melo, J. V., & Villena Del Carpio, J. A. (2023). Effects of the associated incorporation of steel 
wool and carbon nanotube on the healing capacity and mechanical performance of an asphalt mixture. 
International Journal of Fatigue, 168, 107440. https://doi.org/10.1016/j.ijfatigue.2022.107440  

Shishegaran, A., Daneshpajoh, F., Taghavizade, H., & Mirvalad, S. (2020). Developing conductive concrete containing 
wire rope and steel powder wastes for route deicing. Construction and Building Materials, 232, 117184. 
https://doi.org/10.1016/j.conbuildmat.2019.117184  

Standard Specification for Road Works - Section 4: Flexible Pavement. (2008).  



 

314                                                                                                                                  Arsalaan Khan Yousafzai et al. 

 
 Manuscript Received: 15 April 2024 
 Revised Manuscript Received: 10 December 2024 
 Accepted Manuscript: 10 February 2025 
 

Ullah, S., Wan, S., Yang, C., Ma, X., & Dong, Z. (2022). Self-stress and deformation sensing of electrically conductive 
asphalt concrete incorporating carbon fiber and iron tailings. Structural Control and Health Monitoring, 29(9), 
e2998. https://doi.org/10.1002/stc.2998  

Ullah, S., Yang, C., Cao, L., Wang, P., Chai, Q., Li, Y., Wang, L., Dong, Z., Lushinga, N., & Zhang, B. (2021). Material design 
and performance improvement of conductive asphalt concrete incorporating carbon fiber and iron tailings. 
Construction and Building Materials, 303, 124446. https://doi.org/10.1016/j.conbuildmat.2021.124446 

Upadhya, A., Thakur, M. S., Sharma, N., & Sihag, P. (2022). Assessment of Soft Computing-Based Techniques for the 
Prediction of Marshall Stability of Asphalt Concrete Reinforced with Glass Fiber. International Journal of 
Pavement Research and Technology, 15(6), 1366-1385. https://doi.org/https://doi.org/10.1007/s42947-021-
00094-2  

Wang, H., Yang, J., Liao, H., & Chen, X. (2016). Electrical and mechanical properties of asphalt concrete containing 
conductive fibers and fillers. Construction and Building Materials, 122, 184–190. 
https://doi.org/10.1016/j.conbuildmat.2016.06.063  

Wang, L., Shen, A., Wang, W., Yang, J., He, Z., & Zhijie, T. (2022). Graphene/nickel/carbon fiber composite conductive 
asphalt: Optimization, electrical properties and heating performance. Case Studies in Construction Materials, 
17, e01402. https://doi.org/10.1016/j.cscm.2022.e01402  

Wang, Y.-Y., Tan, Y.-Q., Liu, K., & Xu, H.-N. (2022). Preparation and electrical properties of conductive asphalt concretes 
containing graphene and carbon fibers. Construction and Building Materials, 318, 125875. 
https://doi.org/10.1016/j.conbuildmat.2021.125875  

Wu, S., Haji, A., & Adkins, I. (2022). State of art review on the incorporation of fibres in asphalt pavements. Road 
Materials and Pavement Design, 1–36. https://doi.org/10.1080/14680629.2022.2092022  

Yang, C., Wu, S., Xie, J., Amirkhanian, S., Liu, Q., Zhang, J., Xiao, Y., Zhao, Z., Xu, H., Li, N., Wang, F., & Zhang, L. (2022). 
Enhanced induction heating and self-healing performance of recycled asphalt mixtures by incorporating steel 
slag. Journal of Cleaner Production, 366, 132999. https://doi.org/10.1016/j.jclepro.2022.132999  

Yang, D., Karimi, H. R., & Aliha, M. R. M. (2021). Comparison of Testing Method Effects on Cracking Resistance of 
Asphalt Concrete Mixtures. Applied Sciences, 11(11), 5094. https://doi.org/10.3390/app11115094  

Yang, H., Ouyang, J., Cao, P., Chen, W., Han, B., & Ou, J. (2022). Effect of Steel Wool and Graphite on the Electrical 
Conductivity and Pavement Properties of Asphalt Mixture. Journal of Materials in Civil Engineering, 34(3), 
04021466. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004105  

Yousafzai, A. K., Sutanto, M. H., Khan, M. I., Yaro, N. S. A., Baarimah, A. O., Khan, N., Memon, A. M., & Sani Abubakar, 
A. (2024). Systematic Literature Review and Scientometric Analysis on the Advancements in Electrically 
Conductive Asphalt Technology for Smart and Sustainable Pavements. Transportation Research Record, 0(0), 
03611981241260703. https://doi.org/10.1177/03611981241260703  

Yousafzai, A. K., Sutanto, M. H., Khan, M. I., Yaro, N. S. A., Memon, A. M., Khan, M. T., & Arshad, M. A. (2024). A review 
of conductive additives for enhancing the electrical properties of self-sensing asphalt. IOP Conference Series: 
Earth and Environmental Science, 1347(1), 012043. https://doi.org/10.1088/1755-1315/1347/1/012043  

Yousafzai, A. K., Sutanto, M. H., Khan, N., Wahab, M. M. A., Khan, M. I., Abubakar, A. S., & Al-Nawasir, R. (2024). 
Performance Prediction of Waste Tire Metal Fiber-Modified Asphalt Mixes Using a Decision Tree Machine 
Learning Technique. Journal of Hunan University Natural Sciences, 51(7), 29-43. 
https://doi.org/10.55463/issn.1674-2974.51.7.3  

Yousif, R. A., Tayh, S. A., Al-Saadi, I. F., & Jasim, A. F. (2022). Physical and Rheological Properties of Asphalt Binder 
Modified with Recycled Fibers. Advances in Civil Engineering, 2022, 1223467. 
https://doi.org/10.1155/2022/1223467  

Zadri, Z., Glaoui, B., & Abdelkhalek, O. (2022). Enhancement of Electrical and Mechanical Properties of Modified 
Asphalt Concrete with Graphite Powder [Research Articles]. Civil Engineering Journal, 8(1). 
https://www.civilejournal.org/index.php/cej/article/view/2880  

Zhao, Y., & Zhang, Y. (2008). Comparison of decision tree methods for finding active objects. Advances in Space 
Research, 41(12), 1955-1959. https://doi.org/https://doi.org/10.1016/j.asr.2007.07.020  

 

  

 

 


