Paper ID: 458

Analysis of Gravity Data for Basement Depth Estimation of the Western Part of Java Island, Indonesia

 

Riski Ananda1,2,*, Na’ila Yuni Azhari1,2, Tony Rahadinata3,4, & Hendra Grandis1,3

1Graduate Program in Geophysical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jalan Ganesha 10 Bandung 40132, Indonesia

2Meteorological, Climatological, And Geophysical Agency of Indonesia (BMKG), Jalan Angkasa I No.2, Kemayoran, Jakarta Pusat, 10610, Indonesia

3Graduate Program in Geothermal Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jalan Ganesha 10 Bandung 40132, Indonesia

4Center for Mineral Coal and Geothermal Resources, Geological Agency, Ministry of Energy and Mineral Resources Indonesia, Jalan Soekarno-Hatta 576 Bandung 40286, Indonesia

 

*Corresponding author: riskiananda207@gmail.com

 

Abstract

Studying the basement depth and fault structures is crucial for understanding basin geometry and fluid migration pathways. This study aims to understand basin geometry using gravity data in the Banten area, Indonesia, as a region with possible hydrocarbon prospects. Anomaly gradients derived from the Bouguer anomaly were conducted for fault analysis. Meanwhile, basement depth estimation was performed using Euler deconvolution, with a Structural Index (SI) of 0 and window sizes of 7 km × 7 km and 10 km × 10 km. Additionally, 3D inversion modelling with Grablox 1.6 was applied to model the sediment-basement interface. The anomaly gradient results correlate well with regional fault structures, and local structures align with high-gradient areas in southern Banten. Furthermore, high-gradient values are associated with hydrocarbon seep locations, indicating fractures or faults transporting hydrocarbons. The depth estimations of Euler deconvolution cannot accurately identify the discontinuities forming the basin. However, they align reasonably well with the sediment-basement interface of the density model. The model reveals basin structures up to 7.8 km deep in the Bogor Basin and its surroundings, consistent with low residual anomaly areas, aiding in the early estimation of lateral basin boundaries.

Keywords: anomaly gradient; basement depth; Euler deconvolution; gravity anomaly; gravity modelling.

 

References

Ali, M. Y., Watts, A. B., & Farid, A. (2014). Gravity Anomalies of the United Arab Emirates: Implications for Basement Structures and Infra-Cambrian Salt Distribution. GeoArabia, 19(1), 143–158. https://doi.org/10.2113/geoarabia1901143

Altinoğlu, F. F. (2023). Mapping of the Structural Lineaments and Sedimentary Basement Relief Using Gravity Data to Guide Mineral Exploration in the Denizli Basin. Minerals, 13(10). https://doi.org/10.3390/min13101276

Arisbaya, I., Wijanarko, E., Warsa, Sumintadireja, P., Sudrajat, Y., Handayani, L., Mukti, M. M. ruf, & Grandis, H. (2023). Magnetotellurics (MT) and Gravity Study of a Possible Active Fault in Southern Garut, West Java, Indonesia. International Journal of Geophysics, 2023(4482074), 1–20. https://doi.org/10.1155/2023/4482074

Armandita, C., Satyana, A. H., Mukti, M. M., & Yuliandri, I. (2011, January 1). Trace of the Translated Subduction in Central Java and its Role on the Paleogene Basins and Petroleum System Development. Proceedings of HAGI and IAGI Annual Convention and Exhibition.

Cella, F., Nappi, R., Paoletti, V., & Florio, G. (2021). Basement Mapping of the Fucino Basin in Central Italy by ITRESC Modeling of Gravity Data. Geosciences, 11(398), 1–25. https://doi.org/10.3390/geosciences11100398

Chen, Q., Dong, Y., Tan, X., Yan, S., Chen, H., Wang, J., Wang, J., Huang, Z., & Xu, H. (2022). Application of Extended Tilt Angle and Its 3D Euler Deconvolution to Gravity Data from the Longmenshan Thrust Belt and Adjacent Areas. Journal of Applied Geophysics, 206(104769). https://doi.org/10.1016/j.jappgeo.2022.104769

Clariana, P., Soto, R., Ayala, C., Casas-Sainz, A. M., Román-Berdiel, T., Oliva-Urcia, B., Pueyo, E. L., Beamud, E., Rey-Moral, C., Rubio, F., Margalef, A., Schamuells, S., Bach, N., & Martí, J. (2022). Basement and Cover Architecture in the Central Pyrenees Constrained by Gravity Data. International Journal of Earth Sciences, 111(2), 641–658. https://doi.org/10.1007/s00531-021-02137-2

Cordell, L. (1979). Gravimetric Expression of Graben Faulting in Santa Fe Country and the Espanola Basin, New Mexico. New Mexico Geological Society Guidebook, 59–64. https://doi.org/https://doi.org/10.56577/FFC-30.59

Daniel, N. O. B., & Kingsley, T. K. (2020). Application of 3D Euler Deconvolution and 2D Inverse Modelling to Basin Depth Estimation, the Case of the Keta Basin, Ghana. NRIAG Journal of Astronomy and Geophysics, 9(1), 393–401. https://doi.org/10.1080/20909977.2020.1743019

de Souza, M. C., Dourado, F., & Mane, M. Â. (2020). Airborne Geophysical Data Interpretation of the Southeast Portion of Parnaíba Basin, Brazil. Journal of Sedimentary Environments, 5(2), 247–256. https://doi.org/10.1007/s43217-020-00018-3

Dewangan, P., Ramprasad, T., Ramana, M. V., Desa, M., & Shailaja, B. (2007). Automatic Interpretation of Magnetic Data Using Euler Deconvolution with Nonlinear Background. Pure and Applied Geophysics, 164(11), 2359–2372. https://doi.org/10.1007/s00024-007-0264-x

Ekpo, A. E., Bassey, N. E., George, N. J., & Udo, I. G. (2024). Depth to basement estimation from aerogravity data over the Southeastern part of Niger Delta region of Nigeria. Researchers Journal of Science and Technology (REJOST), 4(5), 44–66.

Ferreira, F. J. F., Souza, J. De, Bongiolo, A. D. B. S., & Castro, L. G. De. (2013). Enhancement of the Total Horizontal Gradient of Magnetic Anomalies Using the Tilt Angle. Geophysics, 78(3), 32–41. https://doi.org/10.1190/geo2011-0441.1

Florio, G. (2020). The Estimation of Depth to Basement Under Sedimentary Basins from Gravity Data: Review of Approaches and the ITRESC Method, with an Application to the Yucca Flat Basin (Nevada). Surveys in Geophysics, 41(5), 935–961. https://doi.org/10.1007/s10712-020-09601-9

Ghosh, G. K. (2019). Interpretation of Gravity Anomaly to Delineate Thrust Faults Locations at the Northeastern Part of India and Its Adjacent Areas Using Source Edge Detection Technique, Tilt Derivative and Cos (θ) Analysis. Acta Geophysica, 0123456789. https://doi.org/10.1007/s11600-019-00345-8

Ghosh, G. K. (2022). Study of Gravity Signature Across the Floating Basement of Bundelkhand Granite Using 3D‑Euler Deconvolution, Source Edge Detection Technique and Various Gravity Gradient Analyses. Acta Geophysica, 70(4), 1519–1537. https://doi.org/10.1007/s11600-022-00798-4

Grandis, H., & Dahrin, D. (2014). Constrained Two-dimensional Inversion of Gravity Data. Journal of Mathematical and Fundamental Sciences, 46(1), 1–13. https://doi.org/10.5614/j.math.fund.sci.2014.46.1.1

Hansen, P. C. (1990). Truncated Singular Value Decomposition Solutions to Discrete Ill-Posed Problems with Ill-Determined Numerical Rank. SIAM Journal on Scientific and Statistical Computing, 11(3), 503–518. https://doi.org/10.1137/0911028

Jensen, T. E. (2022). Spatial resolution of airborne gravity estimates in Kalman filtering. Journal of Geodetic Science, 12(1), 185–194. https://doi.org/10.1515/jogs-2022-0143

Legowo, B., Nailatunisrina, R., Purwanto, H., Purnama, B., & Suryanto, W. (2022). Modelling of Volcano Lawu Fault Structure Using Gravity Anomaly to Determine Landslides Potential. IOP Conference Series: Earth and Environmental Science, 986(1). https://doi.org/10.1088/1755-1315/986/1/012025

Lemotio, W., Kamto, P. G., Pham, L. T., Ghomsi, F. E. K., Ntouda, A. O., Fantah, C. A. C., Sévérin, N., & Nouck, P. N. (2024). High-precision Structural Mapping Using Advanced Enhancement Methods of Gravity Anomalies in Southwest Cameroon (Central Africa): Tectonic Implications. Acta Geophysica, 72(4), 2361–2375. https://doi.org/10.1007/s11600-023-01223-0

Li, Y., & Oldenburg, D. W. (1998). 3-D Inversion of Gravity Data. Geophysics, 63(1), 109–119. https://doi.org/10.1190/1.1444302

Lunt, P. (2013). The Sedimentary Geology of Java. Indonesian Petroleum Association.

Marson, I., & Klingele, E. E. (1993). Advantages of Using the Vertical Gradient of Gravity for 3-D Interpretation. Geophysics, 58(11), 1588–1595. https://doi.org/10.1190/1.1443374

Melouah, O., & Ebong, E. D. (2024). Tectonics and seismicity of the Gulf of Aden: Contributions of edge detection filters applied to potential field data. Physics and Chemistry of the Earth, 135(February), 103639. https://doi.org/10.1016/j.pce.2024.103639

Melouah, O., López Steinmetz, R. L., & Ebong, E. D. (2021). Deep Crustal Architecture of the Eastern Limit of the West African Craton: Ougarta Range and Western Algerian Sahara. Journal of African Earth Sciences, 183(June). https://doi.org/10.1016/j.jafrearsci.2021.104321

Melouah, O., & Pham, L. T. (2021). An Improved ILTHG Method for Edge Enhancement of Geological Structures: Application to Gravity Data from the Oued Righ Valley. Journal of African Earth Sciences, 177(December 2020), 104162. https://doi.org/10.1016/j.jafrearsci.2021.104162

Miller, H. G., & Singh, V. (1994). Potential Field Tilt a New Concept for Location of Potential Field Sources. 32, 213–217.

Ministry of Energy and Mineral Resources. (2022). Sedimentary Basin Map of Indonesia. Ministry of Energy and Mineral Resources.

Mouakhar, H., Gabtni, H., & Bel Kahla, A. (2019). Advanced Interpretation of Gravity Data for Determining the Structural Framework: Case of Fkirine and Djebibina Area (Transition Between Central Tunisian Atlas and Sahel Domain, North Africa). Arabian Journal of Geosciences, 12(4). https://doi.org/10.1007/s12517-019-4245-z

Nafian, M., Permana, N. R., Anjani, A., Gunawan, B., & Sanjaya, L. A. (2021). Identification 2D modelling of subsurface structure geothermal prospect area by gravity method: Case study in Tanuhi, South Kalimantan. Journal of Physics: Conference Series, 2019(012081). https://doi.org/10.1088/1742-6596/2019/1/012081

Nguyen, T. N., Van Kha, T., Van Nam, B., & Nguyen, H. T. T. (2020). Sedimentary Basement Structure of the Southwest Sub-basin of the East Vietnam Sea by 3D Direct Gravity Inversion. Marine Geophysical Research, 41(7). https://doi.org/10.1007/s11001-020-09406-w

Oksum, E., Le, D. V., Vu, M. D., Nguyen, T. H. T., & Pham, L. T. (2021). A Novel Approach Based on the Fast Sigmoid Function for Interpretation of Potential Field Data. Bulletin of Geophysics and Oceanography, 62(3), 543–556. https://doi.org/10.4430/bgta0348

Peng, W., Cheng, T., Wang, S., Zhao, H., Pang, L., Zhou, X., Wang, J., & Chen, Z. (2025). Basement depth estimation of the Red Sea basin from gravity data and drilling data. Journal of Geophysics and Engineering, gxaf046, 1–19.

Pham, L. T., Nguyen, D. A., Eldosouky, A. M., Abdelrahman, K., Vu, T. Van, Al-Otaibi, N., Ibrahim, E., & Kharbish, S. (2021). Subsurface Structural Mapping from High-resolution Gravity Data Using Advanced Processing Methods. Journal of King Saud University - Science, 33(5), 101488. https://doi.org/10.1016/j.jksus.2021.101488

Pirttijarvi, M. (2008). Gravity Interpretation and Modeling Software Based on A 3-D Block Model, Version 1.6b. In University of Oulu.

Reid, A. B., Allsop, J. M., Granser, H., Millett, A. J., & Somerton, I. W. (1990). Magnetic Interpretation in 3-D Using Euler Deconvolution. Geophysics, 55(I), 80–91. https://doi.org/10.1190/1.1892190

Reid, A. B., Ebbing, J., & Webb, S. J. (2014). Avoidable Euler Errors - The Use and Abuse of Euler Deconvolution Applied to Potential Fields. Geophysical Prospecting, 62(5), 1162–1168. https://doi.org/10.1111/1365-2478.12119

Reid, A., & Thurston, J. (2014). The Structural Index in Gravity and Magnetic Interpretation: Errors, Uses and Abuses. Geophysics, 79(4), J61–J66. https://doi.org/10.1190/segam2012-0152.1

Ren, Z., & Kalscheuer, T. (2020). Uncertainty and Resolution Analysis of 2D and 3D Inversion Models Computed from Geophysical Electromagnetic Data. Surveys in Geophysics, 41(1), 47–112. https://doi.org/10.1007/s10712-019-09567-3

Reynolds, J. M. (2011). An Introduction to Applied and Environmental Geophysics. In John Wiley & Sons, Ltd. https://doi.org/10.1071/pvv2011n155other

Rusmana, E., Suwitodirdjo, K., & Suharsono. (1991). Peta Geologi Lembar Serang, Jawa. In Pusat Penelitian dan Pengembangan Geologi.

Saini, P., Balyan, L. K., Kumar, A., & Singh, G. K. (2022). Performance Analysis of Different Filters For Gibbs Phenomenon Minimization: A Comparative Study. 2022 IEEE 6th Conference on Information and Communication Technology (CICT), 1–5. https://doi.org/10.1109/CICT56698.2022.9997955

Santosa, S. (1991). Peta Geologi Lembar Anyer, Jawa Barat. In Pusat Penelitian dan Pengembangan Geologi.

Sudana, D., & Santosa, S. (1992). Peta Geologi Lembar Cikarang, Jawa. In Pusat Penelitian dan Pengembangan Geologi.

Sujatmiko, & Santosa, S. (1992). Peta Geologi Lembar Leuwidamar, Jawa: In Pusat Penelitian dan Pengembangan Geologi.

Sumintadireja, P., Dahrin, D., & Grandis, H. (2018). A Note on the Use of the Second Vertical Derivative (SVD) of Gravity Data with Reference to Indonesian Cases. Journal of Engineering and Technological Sciences, 50(1), 127–139. https://doi.org/10.5614/j.eng.technol.sci.2018.50.1.9

Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1991). Applied Geophysics (Second Edition). In Cambridge University Press.

Thompson, D. T. (1982). EULDPH: A New Technique for Making Computer-assisted Depth Estimates from Magnetic Data. Geophysics, 47(1), 31–37. https://doi.org/10.1190/1.1441278

Tijani, M. N., Obini, N., & Inim, I. J. (2021). Estimation of aquifer hydraulic parameters and protective capacity in basement aquifer of south-western Nigeria using geophysical techniques. Environmental Earth Sciences, 80(466), 1–19. https://doi.org/10.1007/s12665-021-09759-4

Untung, M., & Sato, Y. (1978). Gravity and Geological Studies in Jawa, Indonesia. Geological Survey of Indonesia.

Wijanarko, E., Arisbaya, I., Sumintadireja, P., Warsa, & Grandis, H. (2022). Basin Study in Atambua, West Timor, Indonesia from Gravity Data. Journal of Mathematical and Fundamental Sciences, 54(1), 138–150. https://doi.org/10.5614/j.math.fund.sci.2022.54.1.8