Paper ID 517

Comparative Study on Magnetic Activated Carbon Derived from Delignified and Non-delignified Palm Kernel Shell: Synthesis, Characterization, and Methylene Blue Adsorption Analysis

Joko Waluyo1,*, Zahra Putri Nabilla1, Ariadi Indra Putra1, Ibnu Tryansar Purba1, Muhammad Ghozy Izzulhaq1, Irwan Kurnia2, Ardie Septian3 & Lusi Ernawati4

1Chemical Engineering Department, Universitas Sebelas Maret, 57126, Surakarta, Indonesia

2Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia

3Research Center for Environmental and Clean Technology, National Research and Innovation Agency (BRIN), Building 720, K.S.T. B.J Habibie, Serpong, South Tangerang 15314, Indonesia

4 Chemical Engineering Department, Institut Teknologi Kalimantan, 76127, Balikpapan, Indonesia

Corresponding author: jokowaluyo@staff.uns.ac.id

 

Abstract

Indonesia is the global leader in palm oil production but deals with significant challenges in managing palm oil mill waste, particularly palm kernel shells (PKS). This study investigated palm kernel shell (PKS) as a precursor for synthesizing magnetic activated carbon (MAC) to enhance its performance as an adsorbent for liquid waste treatment. The precursor was delignified using alkali liquor and magnetized by incorporating Fe²⁺ and Fe³⁺ ions, followed by chemical activation (ZnCl₂) through an intermediate pyrolysis process. The performances of delignified and non-delignified MAC (DMAC and NDMAC) were evaluated through methylene blue adsorption tests (25–45 mg/L), focusing on adsorption capacity, dye removal efficiency, as well as isotherm and kinetic analysis. DMAC demonstrated a larger surface area, leading to enhanced adsorption performance. Morphological analysis revealed that delignification positively influenced the pore structure and size, enabling a more uniform distribution. DMAC exhibited 16.3% higher adsorption capacity (35.3 mg/g) in equilibrium phase, and 16.6% at maximum adsorption capacity (50.25 mg/g) according to Langmuir isotherm. Additionally, the incorporation of the iron ions (Fe2+/Fe3+) facilitated pore expansion and development in the precursor material. The study identified the Langmuir isotherm model (R² = 0.999) as the most suitable for methylene blue adsorption, while the pseudo-second-order kinetic model (R² = 0.9958) provided the best fit for adsorption kinetics. The findings confirm that DMAC and NDMAC derived from PKS is effective for methylene blue dye adsorption, technically.

Keywords: delignification; dye adsorption; intermediate pyrolysis; isotherm; kinetic; methylene blue.

 

References

Abdolhossein Rejali, N., & Dinari, M. (2025). Highly efficient adsorption of direct Scarlet dye using guanidinium-based covalent organic polymer. Scientific Reports 2025 15:1, 15(1), 1–15. https://doi.org/10.1038/s41598-025-98812-4

Abnisa, F., Arami-Niya, A., Daud, W. M. A. W., & Sahu, J. N. (2013). Characterization of Bio-oil and Bio-char from Pyrolysis of Palm Oil Wastes. Bioenergy Research, 6(2), 830–840. https://doi.org/10.1007/S12155-013-9313-8

Aggour, Y. A., Kenawy, E. R., Magdy, M., & Elbayoumy, E. (2025). Multifunctional copolymers for brilliant green dye removal: adsorption kinetics, isotherm and process optimization. Environmental Science: Advances, 4(5), 787–808. https://doi.org/10.1039/D4VA00404C

Ahmad, J., Hashmi, M. Z., Saeed, A., Pongpiachan, S., Su, X., Reka, A. A., & Ahmed, Z. (2024). Recent Advances in Degradation of Textile Dyes in Wastewater Under UV Visible Wavelength by Nanocomposite: A Review. In Contaminated Land and Water (pp. 145–167). Springer, Cham. https://doi.org/10.1007/978-3-031-65129-8_11

Alardhi, S. M., Salih, H. G., Ali, N. S., Khalbas, A. H., Salih, I. K., Saady, N. M. C., Zendehboudi, S., Albayati, T. M., & Harharah, H. N. (2023). Olive stone as an eco-friendly bio-adsorbent for elimination of methylene blue dye from industrial wastewater. Scientific Reports 2023 13:1, 13(1), 1–14. https://doi.org/10.1038/s41598-023-47319-x

Azari, A., Nabizadeh, R., Mahvi, A. H., & Nasseri, S. (2023). Magnetic multi-walled carbon nanotubes-loaded alginate for treatment of industrial dye manufacturing effluent: adsorption modelling and process optimisation by central composite face-central design. International Journal of Environmental Analytical Chemistry, 103(7), 1509–1529. https://doi.org/10.1080/03067319.2021.1877279

Bhoi, P. R., Ouedraogo, A. S., Soloiu, V., & Quirino, R. (2020). Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis. Renewable and Sustainable Energy Reviews, 121, 109676. https://doi.org/10.1016/J.RSER.2019.109676

Boeriu, C. G., Bravo, D., Gosselink, R. J. A., & Van Dam, J. E. G. (2004). Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Industrial Crops and Products, 20(2), 205–218. https://doi.org/10.1016/J.INDCROP.2004.04.022

El Jery, A., Alawamleh, H. S. K., Sami, M. H., Abbas, H. A., Sammen, S. S., Ahsan, A., Imteaz, M. A., Shanableh, A., Shafiquzzaman, M., Osman, H., & Al-Ansari, N. (2024). Isotherms, kinetics and thermodynamic mechanism of methylene blue dye adsorption on synthesized activated carbon. Scientific Reports, 14(1), 1–12. https://doi.org/10.1038/s41598-023-50937-0

Feng, P., Li, J., Wang, H., & Xu, Z. (2020). Biomass-based activated carbon and activators: Preparation of activated carbon from corncob by chemical activation with biomass pyrolysis liquids. ACS Omega, 5(37), 24064–24072. https://doi.org/10.1021/acsomega.0C03494

Gabelman, A. (2017, July). Adsorption Basics: Part 1. American Institute of Chemical Engineers, 48–53. https://www.aiche.org/sites/default/files/docs/pages/adsorption_basics_part_1.pdf

Gao, Y., Aliques Tomas, M. del C., Garemark, J., Sheng, X., Berglund, L., & Li, Y. (2021). Olive Stone Delignification Toward Efficient Adsorption of Metal Ions. Frontiers in Materials, 8, 605931. https://doi.org/10.3389/FMATS.2021.605931

Grönquist, P., Frey, M., Keplinger, T., & Burgert, I. (2019). Mesoporosity of Delignified Wood Investigated by Water Vapor Sorption. ACS Omega, 4(7), 12425–12431. https://doi.org/10.1021/acsomega.9b00862

Guo, D., Wu, J., Feng, D., Zhang, Y., Zhu, X., Luo, Z., Kang, Y., Zhao, Y., & Sun, S. (2023). Mechanism of efficient magnetic biochar for typical aqueous organic contaminant combined-adsorption removal. Fuel Processing Technology, 247, 107795. https://doi.org/10.1016/J.FUPROC.2023.107795

Guo, T., Zhang, Y., Geng, Y., Chen, J., Zhu, Z., Bedane, A. H., & Du, Y. (2023). Surface oxidation modification of nitrogen doping biochar for enhancing CO2 adsorption. Industrial Crops and Products, 206, 117582. https://doi.org/10.1016/J.INDCROP.2023.117582

Hussain, N., Asif, M., Shafaat, S., Khan, M. S., Riaz, N., Iqbal, M., Javed, A., Butt, T. A., Shaikh, A. J., & Bilal, M. (2025). Multilayer adsorption of reactive orange 16 dye onto Fe2O3/ZnO hybrid nanoadsorbent: mechanistic insights from kinetics, isotherms and dynamic light scattering studies. Journal of Chemical Technology & Biotechnology, 100(1), 50–66. https://doi.org/10.1002/JCTB.7753

Ismail, M. I., Fadzil, M. S. M., Rosmadi, N. N. F., Razali, N. R. A. M., & Mohamad Daud, A. R. (2019). Acid treated corn stalk adsorbent for removal of alizarin yellow dye in wastewater. Journal of Physics: Conference Series, 1349(1), 012105. https://doi.org/10.1088/1742-6596/1349/1/012105

Jerzak, W., Reinmöller, M., & Magdziarz, A. (2022). Estimation of the heat required for intermediate pyrolysis of biomass. Clean Technologies and Environmental Policy, 24(10), 3061–3075. https://doi.org/10.1007/s10098-022-02391-1

Jiang, W., Zhang, L., Guo, X., Yang, M., Lu, Y., Wang, Y., Zheng, Y., & Wei, G. (2021). Adsorption of cationic dye from water using an iron oxide/activated carbon magnetic composites prepared from sugarcane bagasse by microwave method. Environmental Technology, 42(3), 337–350. https://doi.org/10.1080/09593330.2019.1627425

Khaliha, S., Jones, D., Kovtun, A., Navacchia, M. L., Zambianchi, M., Melucci, M., & Palermo, V. (2023). The removal efficiency of emerging organic contaminants, heavy metals and dyes: intrinsic limits at low concentrations. Environmental Science: Water Research & Technology, 9(6), 1558–1565. https://doi.org/10.1039/D2EW00644H

Khruengsai, S., Pripdeevech, P., Pongnailert, S., Chanlek, N., Thumanu, K., Muangmora, R., Rojviroon, T., & Pongpiachan, S. (2024). Chemical characterization of activated carbon derived from Napier grass, rubber wood, bamboo, and hemp. International Journal of Renewable Energy Development, 13(6), 1115–1124. https://doi.org/10.61435/ijred.2024.60502

Kopp Alves, A., Hauschild, T., Basegio, T. M., & Amorim Berutti, F. (2024). Influence of lignin and cellulose from termite-processed biomass on biochar production and evaluation of chromium VI adsorption. Scientific Reports, 14(1), 1–11. https://doi.org/10.1038/s41598-024-65959-5

Kumar, A., Jyske, T., & Petrič, M. (2021). Delignified Wood from Understanding the Hierarchically Aligned Cellulosic Structures to Creating Novel Functional Materials: A Review. Advanced Sustainable Systems, 5(5), 2000251. https://doi.org/10.1002/ADSU.202000251

Kurnia, I., Karnjanakom, S., Irkham, I., Haryono, H., Situmorang, Y. A., Indarto, A., Noviyanti, A. R., Hartati, Y. W., & Guan, G. (2022). Enhanced adsorption capacity of activated carbon over thermal oxidation treatment for methylene blue removal: kinetics, equilibrium, thermodynamic, and reusability studies. RSC Advances, 13(1), 220–227. https://doi.org/10.1039/D2RA06481B

Li, C., Zhang, X., Zhou, C., Yang, F., Liang, J., Gu, H., Wang, J., Wang, F., Peng, W., Guo, J., & Li, H. (2025). Performance and mechanism of a novel bamboo-based magnetic biochar composite for efficient removal of norfloxacin. Advanced Composites and Hybrid Materials, 8(1), 1–14. https://doi.org/10.1007/S42114-024-01142-8

Mashkoor, F., & Nasar, A. (2020). Magnetized Tectona grandis sawdust as a novel adsorbent: preparation, characterization, and utilization for the removal of methylene blue from aqueous solution. Cellulose, 27(5), 2613–2635. https://doi.org/10.1007/S10570-019-02918-8/METRICS

Mohammadzadeh, F., Golshan, M., Haddadi-Asl, V., & Salami-Kalajahi, M. (2023). Adsorption kinetics of methylene blue from wastewater using pH-sensitive starch-based hydrogels. Scientific Reports, 13(1), 1–14. https://doi.org/10.1038/s41598-023-39241-z

Mubarak, N. M., Fo, Y. T., Al-Salim, H. S., Sahu, J. N., Abdullah, E. C., Nizamuddin, S., Jayakumar, N. S., & Ganesan, P. (2015). Removal of Methylene Blue and Orange-G from Waste Water Using Magnetic Biochar. International Journal of Nanoscience, 14(4). https://doi.org/10.1142/S0219581X1550009X

Ozer, C. (2020). Kinetic and equilibrium studies on the batch removal of methylene blue from aqueous solution by using natural magnetic sand. Desalination and Water Treatment, 201, 393–403. https://doi.org/10.5004/DWT.2020.26204

Parlayici, Ş., & Aras, A. (2024). Synthesis of a novel green biopolymer-based composites beads for removal of methylene blue from aquatic medium: isotherm, thermodynamic and kinetic investigation. Polymer Bulletin, 81(7), 6603–6640. https://doi.org/10.1007/S00289-024-05164-6

Potts, S. J., Lau, Y. C., Dunlop, T., Claypole, T., & Phillips, C. (2019). Effect of photonic flash annealing with subsequent compression rolling on the topography, microstructure and electrical performance of carbon-based inks. Journal of Materials Science, 54(11), 8163–8176. https://doi.org/10.1007/S10853-019-03462-3

Pourbaba, R., Abdulkhani, A., Rashidi, A., & Ashori, A. (2024). Lignin nanoparticles as a highly efficient adsorbent for the removal of methylene blue from aqueous media. Scientific Reports, 14(1), 1–13. https://doi.org/10.1038/s41598-024-59612-4

Purba, I. T., Sani, K. Q., Sayekti, N., Ramadhani, S. S., Waluyo, J., Pranolo, S. H., & Kaavessina, M. (2023). Biofilm Fabrication from Cellulose Acetate of Oil Palm Empty Fruit Bunch and Corn Starch as Bio-polybag Material for Eco-friendly Plantation. IOP Conference Series: Earth and Environmental Science, 1217(1), 012037. https://doi.org/10.1088/1755-1315/1217/1/012037

Rao Vaddi, D., Malla, R., & Geddapu, satyanarayana. (2024). Magnetic activated carbon: A promising approach for the removal of methylene blue from wastewater. Desalination and Water Treatment, 317, 100146. https://doi.org/10.1016/J.DWT.2024.100146

Rezakazemi, M., & Shirazian, S. (2019). Lignin-chitosan blend for methylene blue removal: Adsorption modeling. Journal of Molecular Liquids, 274, 778–791. https://doi.org/10.1016/J.MOLLIQ.2018.11.043

Safri, A., Fletcher, A. J., Safri, R., & Rasheed, H. (2022). Integrated Adsorption–Photodegradation of Organic Pollutants by Carbon Xerogel/Titania Composites. Molecules, 27(23), 8483. https://doi.org/10.3390/MOLECULES27238483/S1

Sahoo, S., Uma, Banerjee, S., & Sharma, Y. C. (2014). Application of natural clay as a potential adsorbent for the removal of a toxic dye from aqueous solutions. Desalination and Water Treatment, 52(34–36), 6703–6711. https://doi.org/10.1080/19443994.2013.816872

Selvam, S., & Sarkar, I. (2017). Bile salt induced solubilization of methylene blue: Study on methylene blue fluorescence properties and molecular mechanics calculation. Journal of Pharmaceutical Analysis, 7(1), 71–75. https://doi.org/10.1016/j.jpha.2016.07.006

Shahbazi, D., Mousavi, S. A., & Noori, E. (2020). Adsorption of methylene blue from aqueous solutions using magnetic zero-valent iron-activated grape wastes: optimization and modeling. Desalination and Water Treatment, 182, 375–384. https://doi.org/10.5004/DWT.2020.25184

Soltani, S., Khanian, N., Shean Yaw Choong, T., Asim, N., & Zhao, Y. (2021). Microwave-assisted hydrothermal synthesis of sulfonated TiO2-GO core–shell solid spheres as heterogeneous esterification mesoporous catalyst for biodiesel production. Energy Conversion and Management, 238, 114165. https://doi.org/10.1016/J.ENCONMAN.2021.114165

Somsesta, N., Sricharoenchaikul, V., & Aht-Ong, D. (2020). Adsorption removal of methylene blue onto activated carbon/cellulose biocomposite films: Equilibrium and kinetic studies. Materials Chemistry and Physics, 240, 122221. https://doi.org/10.1016/j.matchemphys.2019.122221

Statista. (2024, March 15). Indonesia: Palm Oil Production Volume 2023. Statista.Com. https://www.statista.com/statistics/706786/production-of-palm-oil-in-indonesia/

Tanis, M. H., Wallberg, O., Galbe, M., & Al-Rudainy, B. (2023). Lignin Extraction by Using Two-Step Fractionation: A Review. Molecules 2024, Vol. 29, Page 98, 29(1), 98. https://doi.org/10.3390/MOLECULES29010098

Tenea, A. G., Dinu, C., Rus, P. A., Ionescu, I. A., Gheorghe, S., Iancu, V. I., Vasile, G. G., Pascu, L. F., & Chiriac, F. L. (2024). Exploring adsorption dynamics of heavy metals onto varied commercial microplastic substrates: Isothermal models and kinetics analysis. Heliyon, 10(15), e35364. https://doi.org/10.1016/J.HELIYON.2024.E35364

Thakham, N., Huang, P. H., Li, K. Y., & Lin, S. C. (2024). Effect of delignification on the adsorption of loofah sponge-based immobilized metal affinity chromatography adsorbent for His-tagged trehalose synthase. Journal of Bioscience and Bioengineering, 138(5), 445–451. https://doi.org/10.1016/J.JBIOSC.2024.08.001

Wahyuni, E. T., Rendo, D., & Suherman, S. (2021). Removal of methylene blue dye in water by using recoverable natural zeolite/Fe3O4 adsorbent. Global Nest Journal, 23(1), 119–126. https://doi.org/10.30955/GNJ.003249

Waluyo, J., Makertihartha, I. G. B. N., & Susanto, H. (2018). Pyrolysis with intermediate heating rate of palm kernel shells: Effect temperature and catalyst on product distribution. AIP Conference Proceedings, 1977(1), 20026. https://doi.org/10.1063/1.5042882/1029929

Waluyo, J., Purba, I. T., Linanggeng, Z. A., Maulana, M. L., Kanchanatip, E., Yan, M., & Hantoko, D. (2025). Biomass Pyrolysis: A Comprehensive Review of Production Methods, Derived Products, and Sustainable Applications in Advanced Materials. Applied Science and Engineering Progress, 18(2), 7645. https://doi.org/10.14416/J.ASEP.2024.11.009

Waluyo, J., Purba, I. T., Sani, K. Q., Sayekti, N., Ramadhani, S. S., Pranolo, S. H., Margono, & Kaavessina, M. (2024). Bioplastic from empty fruit bunch cellulose/chitosan/starch: Optimization through box-Behnken design to enhance the mechanical properties. Journal of Plastic Film & Sheeting, 40(3), 259–282. https://doi.org/10.1177/87560879231226442

Waluyo, J., Rahmawati, F. D., Izzulhaq, M. G., Purba, I. T., Kaavessina, M., Wibowo, W. A., Pranolo, S. H., Buwono, H. P., Septian, A., & Adnan, M. A. (2025). A comparative analysis of single-step and multi-step methods for producing magnetic activated carbon from palm kernel shells: Adsorption of methyl orange dye. Green Processing and Synthesis, 14(1). https://doi.org/10.1515/GPS-2024-0234

Wu, J., Annath, H., Chen, H., & Mangwandi, C. (2023). Upcycling tea waste particles into magnetic adsorbent materials for removal of Cr(VI) from aqueous solutions. Particuology, 80, 115–126. https://doi.org/10.1016/J.PARTIC.2022.11.017

Yadav, S., Asthana, A., Chakraborty, R., Jain, B., Singh, A. K., Carabineiro, S. A. C., & Susan, Md. A. B. H. (2020). Cationic Dye Removal Using Novel Magnetic/Activated Charcoal/β-Cyclodextrin/Alginate Polymer Nanocomposite. Nanomaterials, 10(1), 170. https://doi.org/10.3390/nano10010170

Yang, F., Jin, C., Wang, S., Wang, Y., Wei, L., Zheng, L., Gu, H., Lam, S. S., Naushad, M., Li, C., & Sonne, C. (2023). Bamboo-based magnetic activated carbon for efficient removal of sulfadiazine: Application and adsorption mechanism. Chemosphere, 323, 138245. https://doi.org/10.1016/J.CHEMOSPHERE.2023.138245

Ye, J. Y., Ye, M. Q., Zhang, L., Li, W., Li, Y. S., & Fu, Z. W. (2024). Preparation of magnetic activated carbon fibers@Fe3O4 by electrostatic self-assembly method and adsorption properties for methylene blue. Royal Society Open Science, 11(7). https://doi.org/10.1098/RSOS.240497

Zakaria, R., Jamalluddin, N. A., & Abu Bakar, M. Z. (2021). Effect of impregnation ratio and activation temperature on the yield and adsorption performance of mangrove based activated carbon for methylene blue removal. Results in Materials, 10, 100183. https://doi.org/10.1016/J.RINMA.2021.100183

Zhu, L., Tong, L., Zhao, N., Wang, X., Yang, X., & Lv, Y. (2020). Key factors and microscopic mechanisms controlling adsorption of cadmium by surface oxidized and aminated biochars. Journal of Hazardous Materials, 382, 121002. https://doi.org/10.1016/J.JHAZMAT.2019.121002

Zulkania, A., Iqbal, M., & Syamsumarlin. (2020). Characterization of Adsorbents Derived from Palm Fiber Waste and its Potential on Methylene Blue Adsorption. Key Engineering Materials, 841, 273–277. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/KEM.841.273