Fault Surface Rupture Modeling Using Particle Image Velocimetry Analysis of Analog Sandbox Model
Downloads
This study investigated the correlation between fault kinematics, surficial displacement, and surface rupture geometry patterns between earthquake cycles using particle image velocimetry (PIV) analysis of an analogue sandbox modeling that mimics InSAR observations. The research explored various fault systems, including reverse, normal, and strike-slip faults, through controlled sandbox experiments. The fault surface rupture zone manifests itself due to strain accumulation between two mobile blocks. The displacement magnitude is most pronounced on the surface and is absorbed by the section above the hanging wall or moving block. During fault surface rupture formation, the leading edge of the surface movement consistently extends beyond the anticipated fault surface rupture zone and retreats upon full fault surface rupture development. Subsequently, the distribution of the surface movement is sharply confined by the established fault surface rupture. The key findings of this study underscore the potential of PIV of sandbox modeling for studying fault surface rupture geometry and its development, providing insight into seismic processes. Overall, this work contributes to advancing our knowledge of seismic phenomena and improving strategies for earthquake prediction and mitigation.
Aribowo, S., Husson, L., Natawidjaja,D.H., Authemayou,C., Daryono, M.R., Puji, A.R., Valla, P.G., Pamumpuni, A., Wardhana, D.D., de Gelder, G., Djarwadi, D. & Lorcery, M. , Active Back-Arc Thrust in North West Java, Indonesia, Tectonics, 41(7), Jul. 2022. doi: 10.1029/2021TC007120.
Albini, P., Musson, R.M.W., Rovida, A., Locati, M., Gomez Capera, A.A. & Viganò, D., The Global Earthquake History, Earthq. Spectra, 30(2), pp. 607-624, May 2014, doi: 10.1193/122013EQS297.
Nguyen, N., Griffin, J., Cipta, A. & Cummins, P.R., Indonesia’s Historical Earthquakes: Modelled Examples for Improving the National Hazard Map, Canberra, 2015. doi: 10.11636/Record.2015.023.
Daryono, M.R., Natawidjaja, D.H. & Sieh, K., Twin-surface Ruptures of the March 2007 M > 6 Earthquake Doublet on the Sumatran Fault, Bull. Seismol. Soc. Am.,102(6), pp. 2356-2367, 2012. doi: 10.1785/0120110220.
Massonnet, D., Feigl, K., Rossi, M., & Adragna, F., Radar Interferometric Mapping of Deformation in the Year after the Landers Earthquake, Nature, 369(6477), pp. 227–230, May 1994. doi: 10.1038/369227a0.
Bürgmann, R., Rosen, P.A. & Fielding, E.J., Synthetic Aperture Radar Interferometry to Measure Earth’s Surface Topography and Its Deformation, Annu. Rev. Earth Planet. Sci., 28(1), pp. 169-209, May 2000. doi: 10.1146/annurev.earth.28.1.169.
Bekaert, D.P.S., Walters, R.J., Wright, T.J., Hooper, A.J., & Parker, D.J., Statistical comparison of InSAR tropospheric correction techniques, Remote Sens. Environ., 170, pp. 40-47, 2015. doi: 10.1016/j.rse.2015.08.035.
Sapiie, B., Hadiana, M., Daniel, D., Pamumpun, A., Kurniawan, A. & Sapi’ie, B., Evolution of Fold-Thrust-belt Deformation in the Eastern Indonesia Region, May, 2018. doi: 10.29118/ipa.0.13.g.157.
Sapiie, B., Hadiana, M., & Furqan, T.A., Understanding Mechanics of Fold-Thrust-Belt through Sandbox Modeling, J. Phys. Conf. Ser., 1363(1), 2019. doi: 10.1088/1742-6596/1363/1/012019.
Graveleau, F., Malavieille, J. & Dominguez, S., Tectonophysics Experimental Modeling of Orogenic Wedges : A Review, Tectonophysics, 538-540, pp. 1-66, 2012. doi: 10.1016/j.tecto.2012.01.027.
Lohrmann, J., Kukowski, N., Adam, J. & Oncken, O., The Impact of Analogue Material Properties on the Geometry, Kinematics, and Dynamics of Convergent Sand Wedges, J. Struct. Geol., 25(10), pp. 1691-1711, 2003. doi: 10.1016/S0191-8141(03)00005-1.
Reber, J.E., Cooke, M.L. & Dooley, T.P., What Model Material to Use? A Review on Rock Analogs for Structural Geology and Tectonics, Earth-Science Rev., 202(January), 103107, 2020. doi: 10.1016/j.earscirev.2020.103107.
Adam, J., Urai,J.L., Wieneke, B., Oncken, O., Pfeiffer, K., Kukowski, N., Lohrmann,J., Hoth, S., van der Zee, W. & Schmatz, J., Shear Localisation and Strain Distribution during Tectonic Faulting - New Insights from Granular-flow Experiments and High-resolution Optical Image Correlation Techniques, J. Struct. Geol., 27(2), pp. 283–301, 2005, doi: 10.1016/j.jsg.2004.08.008.
Cruz, L., Malinski, J., Wilson, A., Take, W.A. & Hilley, G., Erosional Control of the Kinematics and Geometry of Fold-and-thrust belts Imaged in a Physical and Numerical Sandbox, J. Geophys. Res. Solid Earth, 115(9), pp. 1-15, 2010. doi: 10.1029/2010JB007472.
Dotare, T., Yamada, Y., Adam, J., Hori, T. & Sakaguchi, H., Initiation of a Thrust Fault Revealed by Analog Experiments, Tectonophysics, 684, pp. 148-156, 2016. doi: 10.1016/j.tecto.2015.12.023.
Marshak, S., Haq, S.S.B. & Sen, P., Ramp Initiation in Fold-thrust Belts: Insight from PIV Analysis of Sandbox Models, J. Struct. Geol., 118, pp. 308–323, 2019, doi: 10.1016/j.jsg.2018.11.006.
Iio, Y., Earthquake Nucleation Process, in Encyclopedia of Complexity and Systems Science, New York, NY: Springer New York, 2009, pp. 2538-2555. doi: 10.1007/978-0-387-30440-3_154.
Klinkmüller, M., Schreurs, G., Rosenau, M. & Kemnitz, H., Properties of Granular Analogue Model Materials: A Community Wide Survey, Tectonophysics, 684, pp. 23-38, 2016. doi: 10.1016/j.tecto.2016.01.017.
Hubbert, M.K. & Rubey, W.W., Role of Fluid Pressure in Mechanics of Overthrust Faulting: I. Mechanics of Fluid-filled Porous Solids and Its Application to Overthrust Faulting, Geol. Soc. Am. Bull., 1959. doi: 10.1130/0016-7606(1959)70[115:ROFPIM]2.0.CO;2.
Dahlen, F.A., Suppe, J. & Davis, D., Mechanics of Fold-and-Thrust Belts and Accretionary Wedges: Cohesive Coulomb Theory, J. Geophys. Res., 89(B12), pp. 10087–10101, 1984. doi: 10.1029/JB089iB12p10087.
Lacombe, O. & Bellahsen, N., Thick-skinned Tectonics and Basement-involved Fold-thrust Belts: Insights from Selected Cenozoic Orogens, Geological Magazine, 153(5-6), pp. 763-810, 2016. doi: 10.1017/S0016756816000078.
Pfiffner, O.A., Thick-Skinned and Thin-Skinned Tectonics: A Global Perspective, Geosci., 7(3), 2017, doi: 10.3390/geosciences7030071.
Visage, S., Souloumiac, P., Cubas,N., Maillot, B., Antoine, S., Delorme, A. & Klinger, Y., Evolution of the Off-Fault Deformation of Strike-Slip Faults in a Sand-Box Experiment, Tectonophysics, 847(July 2022), 229704, 2023. doi: 10.1016/j.tecto.2023.229704.
Mcclay, R., Extensional Fault Systems in Sedimentary Basins: A Review of Analogue Model Studies, Mar. Pet. Geol., 7(3), pp. 206-233, 1990, doi: 10.1016/0264-8172(90)90001-W.
Adrian, R.J. & Westerweel, J., Particle Image Velocimetry. in Cambridge Aerospace Series, Cambridge University Press, 2011.
Raffel, M., Willert, C. E., Wereley, S.T. & Kompenhans, J., Particle Image Velocimetry: A Practical Guide, in Experimental Fluid Mechanics. Springer Berlin Heidelberg, 2007.
Meynart, R., Speckle Velocimetry Study of Vortex Pairing in a Low-Re Unexcited Jet, Phys. Fluids, 26(8), p. 2074, 1983, doi: 10.1063/1.864411.
Yan, D.-P., Xu, Y.-B., Dong, Z.-B., Qiu, L., Zhang, S., & Wells, M., Fault‐related Fold Styles and Progressions in Fold‐Thrust Belts: Insights from Sandbox Modeling, J. Geophys. Res. Solid Earth, 121(3), pp. 2087–2111, Mar. 2016. doi: 10.1002/2015JB012397.
Kobayashi, T., Morishita, Y., & Yarai, H., SAR-revealed Slip Partitioning on a Bending Fault Plane for the 2014 Northern Nagano Earthquake at the Northern Itoigawa–Shizuoka Tectonic Line, Tectonophysics, 733, pp. 85-99, 2018. doi: 10.1016/j.tecto.2017.12.001.
Cheloni, D., De Novellis, V., Albano, M., Antonioli, A., Anzidei, M., Atzori, S., Avallone, A., Bignami, C., Bonano, M., Calcaterra, S., Castaldo, R., Casu, F., Cecere, G., De Luca, C., Devoti, R., Di Bucci, D., Esposito, A., Galvani, A., Gambino, P., Giuliani, R., Lanari, R., Manunta, M., Manzo, M., M. Montuori, A., Pepe, A., Pepe, S. Pezzo, G., Pietrantonio, G., Polcari, M., Riguzzi, F., Salvi, S., Sepe, V., Serpelloni, E., Solaro, G., Stramondo, S., Tizzani, P., Tolomei, C., Trasatti, E., Valerio, E., Zinno, I. & Doglioni, C., Geodetic Model of the 2016 Central Italy Earthquake Sequence Inferred from InSAR and GPS Data, Geophys. Res. Lett., 44(13), pp. 6778-6787, 2017. doi: 10.1002/2017GL073580.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.