Paper ID: 761

The Behavior of Glued-in Threaded Steel Rod Joints in Bangkirai Timber Beams Under Flexural Loading: Experimental and Numerical Investigations

 

Ali Awaludin1,* & Miqdad Khosyi Akbar2

1Department of Civil & Environmental Engineering, Faculty of Engineering, Gadjah Mada University, Indonesia

2Former Graduate Student, Department of Civil Engineering, Faculty of Engineering, Gadjah Mada University, Indonesia

 

*Corresponding author: ali.awaludi@ugm.ac.id

 

Abstract

This study aimed to examine flexural performance of Bangkirai timber beams jointed with glued-in threaded steel rods using epoxy-resin adhesive through experimental test and numerical analysis. A total of six beam specimens with varying rod diameters, anchorage lengths, and beam widths were subjected to four-point bending tests. The specimens included GIR B.65.16.17 (65 mm width, 16 mm rod diameter, 170 mm anchorage length), GIR B.65.12.25 (65 mm width, 12 mm rod diameter, 250 mm anchorage length), and GIR B.110.12.25 (110 mm width, 12 mm rod diameter, 250 mm anchorage length). The results showed that anchorage length significantly influenced moment capacity and stiffness of the beams. The highest average moment capacity was in GIR B.110.12.25 at 20.08 kNm due to its larger cross-section, while GIR B.65.12.25 showed a 58% higher moment capacity (16.57 kNm) than GIR B.65.16.17 (10.48 kNm). Elastic stiffness values were 538.60 kNm2, 809.44 kNm2, and 948.01 kNm2 in GIR B.65.16.17, GIR B.65.12.25, and GIR B.110.12.25, respectively, with longer anchorage lengths enhancing stiffness. The primary failure mechanism was epoxy-resin bond failure, leading to beam separation, while pull-out failure of steel rods was observed in some cases, particularly in specimens with shorter anchorage lengths. A 3-D nonlinear finite element analysis (FEA) was developed to validate experimental results. Differences between experimental and FEA results were within acceptable ranges, including 0.6-14.6% for elastic stiffness and 8.1-13.7% for moment capacity. Load-displacement curves obtained from the FEA correlated well with the experimental results, although the model slightly overestimated moment capacity due to the assumption of perfect epoxy-resin bonding. These results provided insights for optimizing glued-in rod timber joints in structural applications.

Keywords: bangkirai timber; epoxy-resin; finite element analysis; flexural performance; glued-in rods.

References

ABAQUS. (2018). Analysis User’s Guide Volume V: Element.

Ali Awaludin, Muhammad Afif Sulhan, Mahmud Kori Effendi, Inggar Septhia Irawati, & Rohana Hassan. (2025). Flexural Properties of Structural Size Glulam Beams Made from Indonesian Wood Species: Experimental Programs. Journal of the Korean Wood Science and Technology.

Ayansola, G. S., Tannert, T., & Vallee, T. (2022). Experimental investigations of glued-in rod connections in CLT. Construction and Building Materials, 324, 126680. https://doi.org/10.1016/j.conbuildmat.2022.126680

Batchelar, M. L. (2004). STRUCTURAL JOINTS IN GLULAM. https://api.semanticscholar.org/CorpusID:46661785

Broughton, J. G., & Hutchinson, A. R. (2001). Pull-out behaviour of steel rods bonded into timber. Materials and Structures, 34(2), 100–109. https://doi.org/10.1007/BF02481558

DIN Deutsches Institut für Normung. (2008). Design of timber structures. General  rules and rules for buildings.

EN 408. (2010). Timber structures - Structural timber and glued laminated timber - Determination of some physical and mechanical properties.

Gattesco, N., Gubana, A., Buttazzi, M., & Melotto, M. (2017). Experimental investigation on the behavior of glued-in rod joints in timber beams subjected to monotonic and cyclic loading. Engineering Structures, 147, 372–384. https://doi.org/10.1016/j.engstruct.2017.03.078

Grunwald, C., Kaufmann, M., Alter, B., Vallée, T., & Tannert, T. (2018). Numerical investigations and capacity prediction of G-FRP rods glued into timber. Composite Structures, 202, 47–59. https://doi.org/10.1016/j.compstruct.2017.10.010

Grunwald, C., Vallée, T., Fecht, S., Bletz-Mühldorfer, O., Diehl, F., Bathon, L., Walther, F., Scholz, R., & Myslicki, S. (2019). Rods glued in engineered hardwood products part II: Numerical modelling and capacity prediction. International Journal of Adhesion and Adhesives, 90, 182–198. https://doi.org/10.1016/j.ijadhadh.2018.05.004

Hassanieh, A., Valipour, H. R., Bradford, M. A., & Jockwer, R. (2018). Glued-in-rod timber joints: analytical model and finite element simulation. Materials and Structures, 51(3), 61. https://doi.org/10.1617/s11527-018-1189-9

Hussin, T. A. R., Hassan, R., Awaludin, A., Sidek, M. N. M., Hamid, N. H. A., & Salit, M. S. (2022). Experimental Bond Behaviour of Glued-In Rod Connection for Mengkulang Glulam under Pull-Out Loading. Civil Engineering and Architecture, 10(3), 1056–1070. https://doi.org/10.13189/cea.2022.100322

Jensen, J. L., Koizumi, A., Sasaki, T., Tamura, Y., & Iijima, Y. (2001). Axially loaded glued-in hardwood dowels. Wood Science and Technology, 35(1–2), 73–83. https://doi.org/10.1007/s002260000076

Kabir, M. H., Fawzia, S., Chan, T. H. T., & Badawi, M. (2016). Numerical studies on CFRP strengthened steel circular members under marine environment. Materials and Structures, 49(10), 4201–4216. https://doi.org/10.1617/s11527-015-0781-5

Kemmsies, M. (1999). Comparison of pull-out strengths of 12 adhesives for glued-in rods for timber structures. https://api.semanticscholar.org/CorpusID:139337436

Kyvelou, P., Gardner, L., & Nethercot, D. A. (2018). Finite element modelling of composite cold-formed steel flooring systems. Engineering Structures, 158, 28–42. https://doi.org/10.1016/j.engstruct.2017.12.024

Lavisci, P., Duchanois, G., De Ciechi, M., Spinelli, P., & Feligioni, L. (2003). Influence of glue rheology and joint thickness on the strength of bonded-in rods. Holz Als Roh- Und Werkstoff, 61(4), 281–287. https://doi.org/10.1007/s00107-003-0387-4

Ling, Z., Liu, W., Yang, H., & Chen, X. (2018). Modelling of glued laminated timber joints with glued-in rod considering bond-slip location function. Engineering Structures, 176, 90–102. https://doi.org/10.1016/j.engstruct.2018.08.098

Ling, Z., Xiang, Z., Liu, W., Yang, H., & Tang, J. (2019). Load-slip behaviour of glue laminated timber connections with glued-in steel rod parallel to grain. Construction and Building Materials, 227, 117028. https://doi.org/10.1016/j.conbuildmat.2019.117028

Ling, Z., Yang, H., Liu, W., Lu, W., Zhou, D., & Wang, L. (2014). Pull-out strength and bond behaviour of axially loaded rebar glued-in glulam. Construction and Building Materials, 65, 440–449. https://doi.org/10.1016/j.conbuildmat.2014.05.008

Madhoushi, M., & Ansell, M. P. (2008). Behaviour of timber connections using glued-in GFRP rods under fatigue loading. Part I: In-line beam to beam connections. Composites Part B: Engineering, 39(2), 243–248. https://doi.org/10.1016/j.compositesb.2007.07.001

Malczyk, R. (1993). Glued-in re-bar connection. https://open.library.ubc.ca/collections/831/items/1.0050496

Mindrasari, P., & Awaludin, A. (2018, April). The Effect of Diameter and Anchorage Length of Keruing Wooden Dowels, Deformed Steel Dowels and GFRP Dowels on Pull-out Strength of Keruing Timber Block with Epoxy Resin Adhesive.

Muciaccia, G. (2019). An experimental approach to determine pull-out strength of single and multiple axially loaded steel rods bonded in glulam parallel to the grain. Wood Material Science & Engineering, 14(2), 88–98. https://doi.org/10.1080/17480272.2017.1404491

Navaratnam, S., Thamboo, J., Ponnampalam, T., Venkatesan, S., & Chong, K. B. (2022). Mechanical performance of glued-in rod glulam beam to column moment connection: An experimental study. Journal of Building Engineering, 50, 104131. https://doi.org/10.1016/j.jobe.2022.104131

Ngudiyono, N., Hariyadi, H., & Ningsih, Y. P. (2021). SIMULASI NUMERIK KUAT LEKAT TULANGAN BAJA DAN BETON DENGAN PROGRAM ABAQUS STUDENT EDITION (SE). FROPIL (Forum Profesional Teknik Sipil), 9(1), 10–17. https://doi.org/10.33019/fropil.v9i1.2287

O’Neill, C., McPolin, D., Taylor, S. E., Harte, A. M., O’Ceallaigh, C., & Sikora, K. S. (2017). Timber moment connections using glued-in basalt FRP rods. Construction and Building Materials, 145, 226–235. https://doi.org/10.1016/j.conbuildmat.2017.03.241

Otero Chans, D., Cimadevila, J. E., & Gutiérrez, E. M. (2008). Glued joints in hardwood timber. International Journal of Adhesion and Adhesives, 28(8), 457–463. https://doi.org/10.1016/j.ijadhadh.2008.04.008

Parida, G., Johnsson, H., & Fragiacomo, M. (2013). Provisions for Ductile Behavior of Timber-to-Steel Connections with Multiple Glued-In Rods. Journal of Structural Engineering, 139(9), 1468–1477. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000735

Riberholt, H. (1988). GLUED BOLTS IN GLULAM - PROPOSALS FOR CIB CODE.   Proceedings of the 21st Meeting of W018, Parksville, Vancouver Island, Canada, 19.

Rossignon, A., & Espion, B. (2008). Experimental assessment of the pull-out strength of single rods bonded in glulam parallel to the grain. Holz Als Roh- Und Werkstoff, 66(6), 419–432. https://doi.org/10.1007/s00107-008-0263-3

Serrano E, Steiger R, & Lavisci P. (2008). COST E34-WG1: Bonding on Site 5 GLUED-IN RODS. Lignovisionen, 18, 31–39.

Shekarchi, M., Shakiba, M., Yekrangnia, M., & Tannert, T. (2022). Performance of glued-in rod timber joints under seawater and UV exposure cycles. Construction and Building Materials, 322, 126418. https://doi.org/10.1016/j.conbuildmat.2022.126418

Steiger, R., Gehri, E., & Widmann, R. (2007). Pull-out strength of axially loaded steel rods bonded in glulam parallel to the grain. Materials and Structures, 40(1), 69–78. https://doi.org/10.1617/s11527-006-9111-2

Tannert, T., Vallée, T., & Hehl, S. (2012). Experimental and numerical investigations on adhesively bonded timber joints. Wood Science and Technology, 46(1–3), 579–590. https://doi.org/10.1007/s00226-011-0423-1

Tenar, F. K., Mulyatno, I. P., & Budiarto, U. (2017). Analisa Kekuatan Sambungan Konstruksi Lambung Pada Kapal Kayu 100 Gt Di Daerah Batang Dengan Menggunakan Metode Elemen Hingga. Jurnal Teknik Perkapalan, 5(4), 641. http://ejournal3.undip.ac.id/index.php/naval

Thamboo, J., Navaratnam, S., & Ponnampalam, T. (2022). Pull-out resistance of glued in rod connection in timber: Reliability analyses using an experimental database. Construction and Building Materials, 344, 128291. https://doi.org/10.1016/j.conbuildmat.2022.128291

Tlustochowicz, G., Serrano, E., & Steiger, R. (2011). State-of-the-art review on timber connections with glued-in steel rods. Materials and Structures, 44(5), 997–1020. https://doi.org/10.1617/s11527-010-9682-9

Vallée, T., Tannert, T., & Fecht, S. (2017). Adhesively bonded connections in the context of timber engineering – A Review. The Journal of Adhesion, 93(4), 257–287. https://doi.org/10.1080/00218464.2015.1071255

Xu, B. H., Bouchaïr, A., & Racher, P. (2012). Analytical study and finite element modelling of timber connections with glued-in rods in bending. Construction and Building Materials, 34, 337–345. https://doi.org/10.1016/j.conbuildmat.2012.02.087

Zhu, H., Faghani, P., & Tannert, T. (2017). Experimental investigations on timber joints with single glued-in FRP rods. Construction and Building Materials, 140, 167–172. https://doi.org/10.1016/j.conbuildmat.2017.02.09