Performance Analysis of Radiation Detection Devices in Elevated Natural Radiation Zones: A Case Study of Mamuju Regency, West Sulawesi Indonesia

Downloads
Three radiation detection tools were employed to assess natural radiation levels in Mamuju Regency, West Sulawesi, Indonesia. These tools comprised the NaI(Tl) Scintillator, the Geiger Muller Counter (GMC), and the Electronic Personal Dosimeter (EPD). The NaI(Tl) Scintillator and GMC measured ambient dose equivalent (H*(10)), while the EPD exclusively gauged personal dose equivalent (Hp(10)). A total of 75 measuring points were designated for assessment. Results from H*(10) measurements indicated that the GMC recorded an average H*(10) 41% higher than that of the NaI(Tl) Scintillator, with specific rates of 0.769 µSv/h and 0.457 µSv/h, respectively. Both instruments exhibited proficiency in detecting elevated levels of radiation. Discrepancies in the outcomes were attributed to differences in detector type and efficiency. The GMC, equipped with an energy-compensated detector, demonstrated enhanced efficiency compared to the NaI(Tl) Scintillator, particularly when subjected to high energy flux radiation. Anomalies emerged in the Hp(10) measurements, which surpassed the H*(10) measurements. This difference is due to the EPD's use of a conventional GM detector, which is capable of detecting gamma, beta, and X-ray radiation
Alatas, Z., Hidayati, S., Akhadi, M., Purba, M., Purwadi, D., Ariyanto, S., Winarno, H., Rismiyanto, Sofyatiningrum, Hendriyanto, E., Widyatono, H., Parmanto, E. M., & Syahril. (2016). Buku Pintar Nuklir (Ruslan (ed.); 1st ed.). Batan Press.
ALMisned, G., Zakaly, H. M. H., Ali, F. T., Issa, S. A. M., Ene, A., Kilic, G., Ivanov, V., & Tekin, H. O. (2022). A closer look at the efficiency calibration of LaBr3(Ce) and NaI(Tl) scintillation detectors using MCNPX for various types of nuclear investigations. Heliyon, 8(10), e10839. https://doi.org/https://doi.org/10.1016/j.heliyon.2022.e10839
Canberra. (2011). InSpector TM 1000 Digital Hand- Held Multichannel Analyzer. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.gammadata.se/assets/Uploads/In1K-SS-C38987.pdf
Casanovas, R, Morant, J. J., & Salvadó, M. (2012). Development and calibration of a real-time airborne radioactivity monitor using gamma-ray spectrometry on a particulate filter. 2012 18th IEEE-NPSS Real Time Conference, 1–4. https://doi.org/10.1109/RTC.2012.6418383
Casanovas, R., Prieto, E., & Salvadó, M. (2016). Calculation of the ambient dose equivalent H*(10) from gamma-ray spectra obtained with scintillation detectors. Applied Radiation and Isotopes, 118, 154–159. https://doi.org/https://doi.org/10.1016/j.apradiso.2016.09.001
Enviro. (n.d.). User Manual Smart Rad Electornic Personal Dosimeter. Available at: https://fccid.io/OVEEV-IB/User-Manual/User-Manual-1758473
Godang, S., Idrus, A., Priadi Fadlin, B., & Basuki, N. I. (2019). Saprolitizationâ€TMs Characteristics of Rare Earth Elements in Volcanic Regolith on Drill Core #65 in Western Sulawesi, Indonesia. Asian Journal of Applied Sciences, 7(4). https://doi.org/10.24203/ajas.v7i4.5873
Hashimoto, K., & Yamada, S. (1999). Counting losses due to saturation effects of scintillation counters at high count rates. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 438(2), 502–510. https://doi.org/10.1016/S0168-9002(99)00847-5
Heryana, A. (2023). Bekerja dengan Data Tidak Normal. https://doi.org/10.13140/RG.2.2.27700.73604
Hosoda, M., Djatnika, E., Akata, N., Yamada, R., Tamakuma, Y., Sasaki, M., Kelleher, K., Yoshinaga, S., Suzuki, T., & Pornnumpa, C. (2021). A unique high natural background radiation area – Dose assessment and perspectives. Science of the Total Environment, 750, 142346. https://doi.org/10.1016/j.scitotenv.2020.142346
IAEA. (2003). Guidelines for Radioelement Mapping Using Gamma Ray Spectrometry Data (Issue 1363). International Atomic Energy Agency. https://www.iaea.org/publications/6746/guidelines-for-radioelement-mapping-using-gamma-ray-spectrometry-data
ICRP. (1996). Conversion Coefficients for use in Radiological Protection against External Radiation. ICRP Publication 74. Ann. ICRP 26 (3-4). Annals of the ICRP, 6, (1). https://doi.org/10.1016/0146-6453(81)90127-5
Indrastomo, F. D., Sukadana, I. G., Saepuloh, A., Harsolumakso, A. H., & Kamajati, D. (2015). Interpretation of Mamuju Region Volcanostratigraphy Based on Landsat-8 Image Analysis. EKSPLORIUM, 36(2), 71–88. (Text in Indonesian) https://doi.org/ 10.17146/Eksplorium.2015.36.2.2772,
Izewska, J., & Rajan, G. (2005). Radiation dosimeters. IAEA. http://www-pub.iaea.org/MTCD/publications/PDF/Pub1196_web.pdf
Kadum, A., & Dahmani, B. (2015). Efficiency calculation of NaI(Tl) 2 × 2 well-shaped detector. Instruments and Experimental Techniques, 58(3), 429–434. https://doi.org/10.1134/S0020441215030070
Kakaei, M., Khabazi, H., & Nassiri-Mofakham, N. (2022). A method to overcome the saturation of real-time radon detectors used in high natural radiation regions. Applied Radiation and Isotopes, 180, 110025. https://doi.org/https://doi.org/10.1016/j.apradiso.2021.110025
Kim, J., Park, K., Hwang, J., Kim, H., Kim, J., Kim, H., Jung, S.-H., Kim, Y., & Cho, G. (2019). Efficient design of a ∅2×2 inch NaI(Tl) scintillation detector coupled with a SiPM in an aquatic environment. Nuclear Engineering and Technology, 51(4), 1091–1097. https://doi.org/https://doi.org/10.1016/j.net.2019.01.017
Kržanović, N., Stanković, K., Živanović, M., Đaletić, M., & Ciraj-Bjelac, O. (2019). Development and testing of a low cost radiation protection instrument based on an energy compensated Geiger-Müller tube. Radiation Physics and Chemistry, 164, 108358. https://doi.org/https://doi.org/10.1016/j.radphyschem.2019.108358
Lecoq, P. (2020). Scintillation Detectors for Charged Particles and Photons BT - Particle Physics Reference Library: Volume 2: Detectors for Particles and Radiation (C. W. Fabjan & H. Schopper (eds.); pp. 45–89). Springer International Publishing. https://doi.org/10.1007/978-3-030-35318-6_3
Lehto, J. (2016). BASICS OF NUCLEAR PHYSICS AND OF RADIATION DETECTION AND MEASUREMENT: An open-access textbook for nuclear and radiochemistry students. https://api.semanticscholar.org/CorpusID:198477191
Lips, M., Anderson, E., Nishida, K., Schneider, G., Zic, J., Sanders, C., Owen, J., Hondros, J., & de Ruvo, A. (2021). Reflection on the proposed changes to dose quantities-an industrial perspective. Journal of Radiological Protection : Official Journal of the Society for Radiological Protection, 41(4). https://doi.org/10.1088/1361-6498/ac31c3
LTKMR. (2022a). Calibration Report No. B-294-7/IV / LT / KAUR / 05 / 2022.
LTKMR. (2022b). Calibration Report No . B-294-8 / IV / LT / KAUR / 05 / 2022.
Marques, L., Vale, A., & Vaz, P. (2021). State-of-the-Art Mobile Radiation Detection Systems for Different Scenarios. In Sensors (Vol. 21, Issue 4). https://doi.org/10.3390/s21041051
Mirion. (2018). UltraRadiacTM-Plus. https://www.laurussystems.com/wp-content/uploads/7068914D-UltraRadiac-Plus-Users-Manual.pdf
MoEG, J. (2017). Dose Equivalents: Measurable Operational Quantities for Deriving Effective Doses. BOOKLET to Provide Basic Information Regarding Health Effects of Radiation, Miinistry of the Environment Government Japan. https://www.env.go.jp/en/chemi/rhm/basic-info/2018/02-03-08.html
Mouhti, I., Elanique, A., Messous, M. Y., Belhorma, B., & Benahmed, A. (2018). Validation of a NaI(Tl) and LaBr3(Ce) detector’s models via measurements and Monte Carlo simulations. Journal of Radiation Research and Applied Sciences, 11(4), 335–339. https://doi.org/https://doi.org/10.1016/j.jrras.2018.06.003
Nugraha, E. D., Hosoda, M., Kusdiana, Untara, Mellawati, J., Nurokhim, Tamakuma, Y., Ikram, A., Syaifudin, M., Yamada, R., Akata, N.,
Sasaki, M., Furukawa, M., Yoshinaga, S., Yamaguchi, M., Miura, T., Kashiwakura, I., & Tokonami, S. (2021). Comprehensive exposure assessments from the viewpoint of health in a unique high natural background radiation area, Mamuju, Indonesia. Scientific Reports, 11(1), 14578. https://doi.org/10.1038/s41598-021-93983-2
Nugraha, E. D., Hosoda, M., Tamakuma, Y., Kranrod, C., Mellawati, J., Akata, N., & Tokonami, S. (2021). A unique high natural background radiation area in Indonesia: a brief review from the viewpoint of dose assessments. Journal of Radioanalytical and Nuclear Chemistry, 330(3), 1437–1444. https://doi.org/10.1007/s10967-021-07908-4
NUSTL. (2016). Radiation Dosimeters for Response and Recovery Market Survey Report. In Radiation Dosimeters for Response and Recovery Market Survey Report (Issue June). https://www.dhs.gov/sites/default/files/publications/Radiation-Dosimeters-Response-Recovery-MSR_0616-508_0.pdf
Patel, A., & Mazumdar, H. (2023). A review on Radiation Detectors for Various Radiation Detection Applications. Journal of Radiation and Nuclear Applications, 8(2), 93–111. https://doi.org/10.18576/jrna/080201
Ramadhan, R. A., & Abdullah, K. M.-S. (2018). Background reduction by Cu/Pb shielding and efficiency study of NaI(TI) detector. Nuclear Engineering and Technology, 50(3), 462–469. https://doi.org/https://doi.org/10.1016/j.net.2017.12.016
Rosianna, I., Nugraha, E. D., Syaeful, H., Putra, S., Hosoda, M., Akata, N., & Tokonami, S. (2020). Natural Radioactivity of Laterite and Volcanic Rock Sample for Radioactive Mineral Exploration in Mamuju, Indonesia. Geosciences, 10(9). https://doi.org/10.3390/geosciences10090376
Saindane, S., Pujari, R. N., Murali, S., Narsaiah, M. V. R., Dhole, S. D., & Karmalkar, N. R. (2020). Environmental radiation mapping methodology and applications. https://doi.org/10.4103/rpe.RPE
Sukadana, I. G., Harijoko, A., & Setijadji, L. D. (2015). Tectonic Setting of Volcanic Rocks in the Adang Complex, Mamuju Regency, West Sulawesi Province. Eksplorium: Buletin Pusat Teknologi Bahan Galian Nuklir, 36(1), 31–44. (Text in Indonesian) https://doi.org/10.17146/eksplorium.2015.36.1.2769
Sukadana, I. G., Syaeful, H., Indrastomo, F. D., Widana, K. S., & Rakhma, E. (2016). Identification of Mineralization Type and Specific Radioactive Minerals in Mamuju, West Sulawesi. Journal of East China University of Technology, 39, 39–48.
Sukadana, I. G., Warmada, I. W., Harijoko, A., Indrastomo, F. D., & Syaeful, H. (2021). The Application of Geostatistical Analysis on Radiometric Mapping Data to Recognized the Uranium and Thorium Anomaly in West Sulawesi, Indonesia. IOP Conference Series: Earth and Environmental Science, 819(1). https://doi.org/10.1088/1755-1315/819/1/012030
Syaeful, H., Sukadana, I. G., & Sumaryanto, A. (2014). Radiometric Mapping for Naturally Occurring Radioactive Materials ( NORM ) Assessment in Mamuju , West Sulawesi. Atom Indonesia, 40(1), 33–39. https://aij.batan.go.id/index.php/aij/article/view/263
Tavakoli-Anbaran, H., Izadi-Najafabadi, R., & Miri-Hakimabad, H. (2009). The Effect of Detector Dimensions on the NaI (Tl) Detector Response Function. Journal of Applied Sciences, 9(11), 5. https://scialert.net/fulltext/?doi=jas.2009.2168.2173
Tzortzis, M., & Tsertos, H. (2004). Determination of thorium, uranium and potassium elemental concentrations in surface soils in Cyprus. Journal of Environmental Radioactivity, 77(3), 325–338. https://doi.org/https://doi.org/10.1016/j.jenvrad.2004.03.014
UNSCEAR. (2000). Sources and effects of ionizing radiation UNSCEAR 2000 report to the General Assembly, with scientific annexes Volume I: Sources. UN. http://inis.iaea.org/search/search.aspx?orig_q=RN:32002971
UNSCEAR. (2010). Sources and Effects of Ionizing Radiation, UNSCEAR 2008 Report, Volume I: (Sources) Report to the General Assembly, Scientific Annexes A and B (ANNEX B): Vol. I. United Nations Publication, NewYork, USA.
Yavuzkanat, N., Şenyiğit, M., & Kaplan, M. (2022). Investigation of the gamma-ray efficiency for various scintillation detector systems. Revista Mexicana de Física, 68(4 Jul-Aug), 041201 1–. https://doi.org/10.31349/RevMexFis.68.041201
Yavuzkanat, N., YalcinN, S., & Gungor, D. (2019). The Determination of the Total Efficiency for NaI(Tl) Detector by GATE Simulation. BEU Journal of Science, 8, 37–45. Bitlis Eren University WT - DergiPark. https://doi.org/10.17798/bitlisfen.649129
Zhu, H., Kane, S. C., Croft, S., Venkataraman, R., & Bronson, F. L. (2006). Optimization of the Canberra UltraRadiac GM Tube Wrapping. 2006 IEEE Nuclear Science Symposium Conference Record, 2, 923–925. https://api.semanticscholar.org/CorpusID:2190957
Žunić, Z. S., Kobal, I., Vaupotič, J., Kozak, K., Mazur, J., Birovljev, A., Janik, M., Čeliković, I., Ujić, P., Demajo, A., Krstić, G., Jakupi, B., Quarto, M., & Bochicchio, F. (2006). High natural radiation exposure in radon spa areas: a detailed field investigation in Niška Banja (Balkan region). Journal of Environmental Radioactivity, 89(3), 249–260. https://doi.org/https://doi.org/10.1016/j.jenvrad.2006.05.010
Copyright (c) 2025 Journal of Engineering and Technological Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.