Innovative Approach to Graphene Film Synthesis: Factorial Design in PECVD Experiments
Downloads
Graphene, a two-dimensional carbon allotrope, has garnered significant interest due to its exceptional properties and diverse applications. This study investigates the optimization of graphene synthesis parameters using plasma-enhanced chemical vapor deposition (PECVD) to enhance film properties and broaden their application potentials. Using a comprehensive factorial design approach, factors including electric power (ranging from 60 to 100 W), the acetylene-to-hydrogen ratio (ranging from 30:70 to 50:50), and discharge time (ranging from 10 to 30 minutes) were systematically varied, and film thickness and the D/G ratio served as response variables. The experimental results revealed the significant effects of these parameters on film thickness, with optimal conditions identified as an electric power of 100 W, an acetylene-to-hydrogen ratio of 50:50, and a discharge time of 10 min. The average film thickness ranged from 41.51 to 253.80 nm. Morphological and structural analyses using atomic force microscopy and Raman spectroscopy elucidated the impact of synthesis parameters on film characteristics, with the D/G ratio varying from 0.75 to 1.8, indicating the degree of graphitization and defect density. Furthermore, surface properties and wettability were assessed using contact angle measurements, providing insights into surface interactions crucial for various applications. This study culminates in discussions on the implications for graphene synthesis optimization and its potential applications across diverse fields. Overall, this research contributes to advancing the understanding of graphene synthesis methodologies and underscores its significance in driving technological innovations.
Abdelrahman, M. M. (2015). Study of plasma and ion beam sputtering processes. Journal of Physical Science and Application, 5(2), 128–142. https://doi.org/10.17265/2159-5348/2015.02.007
Dasari, B. L., Nouri, J. M., Brabazon, D., & Naher, S. (2017). Graphene and derivatives–Synthesis techniques, properties and their energy applications. Energy, 140, 766–778. https://doi.org/10.1016/j.energy.2017.08.048
Fu, R., Yang, Y., Lu, C., Ming, Y., Zhao, X., Hu, Y., … & Chen, W. (2018). Large-scale fabrication of high-performance ionic polymer–metal composite flexible sensors by in situ plasma etching and magnetron sputtering. ACS Omega, 3(8), 9146–9154. https://doi.org/10.1021/acsomega.8b00877
Iqbal, M., Dinh, D. K., Abbas, Q., Imran, M., Sattar, H., & Ul Ahmad, A. (2019). Controlled surface wettability by plasma polymer surface modification. Surfaces, 2(2), 349–371. https://doi.org/10.3390/surfaces2020026
Kalita, G., Ayhan, M. E., Sharma, S., Shinde, S. M., Ghimire, D., Wakita, K., … & Tanemura, M. (2014). Low-temperature deposited graphene by surface wave plasma CVD as effective oxidation resistive barrier. Corrosion Science, 78, 183–187. https://doi.org/10.1016/j.corsci.2013.09.013
Kalita, G., Kayastha, M. S., Uchida, H., Wakita, K., & Umeno, M. (2012). Direct growth of nanographene films by surface wave plasma chemical vapor deposition and their application in photovoltaic devices. RSC Advances, 2(8), 3225–3230. https://doi.org/10.1039/C2RA01024K
Kalita, G., Sharma, S., Wakita, K., Umeno, M., Hayashi, Y., & Tanemura, M. (2012). Synthesis of graphene by surface wave plasma chemical vapor deposition from camphor. Physica Status Solidi (a), 209(12), 2510–2513. https://doi.org/10.1002/pssa.201228554
Kalita, G., Wakita, K., & Umeno, M. (2012). Low-temperature growth of graphene film by microwave-assisted surface wave plasma CVD for transparent electrode application. RSC Advances, 2(7), 2815–2820. https://doi.org/10.1039/C2RA00648K
Khan, K., Tareen, A. K., Iqbal, M., Shi, Z., Zhang, H., & Guo, Z. (2021). Novel emerging graphdiyne-based two-dimensional materials: Synthesis, properties and renewable energy applications. Nano Today, 39, 101207. https://doi.org/10.1016/j.nantod.2021.101207
Kleijn, C. R., Dorsman, R., Kuijlaars, K. J., Okkerse, M., & van Santen, H. V. (2007). Multi-scale modeling of chemical vapor deposition processes for thin-film technology. Journal of Crystal Growth, 303(2), 362–380. https://doi.org/10.1016/j.jcrysgro.2006.12.062
Kruszelnicki, M., Polowczyk, I., & Kowalczuk, P. B. (2024). Insight into the influence of surface wettability on flotation properties of solid particles–Critical contact angle in flotation. Powder Technology, 431, 119056. https://doi.org/10.1016/j.powtec.2023.119056
Li, X., Colombo, L., & Ruoff, R. S. (2016). Synthesis of graphene films on copper foils by chemical vapor deposition. Advanced Materials, 28(31), 6247–6252. https://doi.org/10.1002/adma.201504760
Li, Z., Deng, L., Kinloch, I. A., & Young, R. J. (2023). Raman spectroscopy of carbon materials and their composites: Graphene, nanotubes and fibres. Progress in Materials Science, 135, 101089. https://doi.org/10.1016/j.pmatsci.2023.101089
Liu, W., Li, M., Jiang, G., Li, G., Zhu, J., Xiao, M., … & Chen, Z. (2020). Graphene quantum dots-based advanced electrode materials: Design, synthesis and their applications in electrochemical energy storage and electrocatalysis. Advanced Energy Materials, 10(26), 2001275. https://doi.org/10.1002/aenm.202001275
Ma, T., Liu, Z., Wen, J., Gao, Y., Ren, X., Chen, H., … & Ren, W. (2017). Tailoring the thermal and electrical transport properties of graphene films by grain size engineering. Nature Communications, 8, 14486. https://doi.org/10.1038/ncomms14486
Moene, R., Dekker, J. P., Makkee, M., Schoonman, J., & Moulijn, J. A. (1994). Evaluation of isothermal chemical vapor infiltration with Langmuir‐Hinshelwood type kinetics. Journal of the Electrochemical Society, 141(2), 282–286. https://doi.org/10.1149/1.2054700
Phiri, J., Johansson, L. S., Gane, P., & Maloney, T. (2018). A comparative study of mechanical, thermal and electrical properties of graphene-, graphene oxide-and reduced graphene oxide-doped microfibrillated cellulose nanocomposites. Composites Part B: Engineering, 147, 104–113. https://doi.org/10.1016/j.compositesb.2018.04.018
Roy, D., Kanojia, S., Mukhopadhyay, K., & Eswara Prasad, N. (2021). Analysis of carbon-based nanomaterials using Raman spectroscopy: Principles and case studies. Bulletin of Materials Science, 44, 31. https://doi.org/10.1007/s12034-020-02327-9
Scardaci, V., & Compagnini, G. (2021). Raman spectroscopy investigation of graphene oxide reduction by laser scribing. Journal of Carbon Research, 7(2), 48. https://doi.org/10.3390/c7020048
Song, Y., Zou, W., Lu, Q., Lin, L., & Liu, Z. (2021). Graphene transfer: Paving the road for applications of chemical vapor deposition graphene. Small, 17(8), 2007600. https://doi.org/10.1002/smll.202007600
Stephen, D. T., & Hong, H. (2023). Using combustion synthesis to convert emissions into useful solid materials. In Combustion Chemistry and the Carbon Neutral Future, 599–630. Elsevier. https://doi.org/10.1016/B978-0-323-99213-8.00016-3
Sui, C., Zhao, Y., Zhang, Z., He, J., Zhang, Z., He, X., … & Wu, J. (2017). Morphology-controlled tensile mechanical characteristics in graphene allotropes. ACS Omega, 2(7), 3977–3988. https://doi.org/10.1021/acsomega.7b00732
Thomas, T. M., Chowdhury, I. U., Dhivyaraja, K., Mahapatra, P. S., Pattamatta, A., & Tiwari, M. K. (2021). Droplet dynamics on a wettability patterned surface during spray impact. Processes, 9(3), 555. https://doi.org/10.3390/pr9030555
Vasić, B., Matković, A., & Gajić, R. (2017). Phase imaging and nanoscale energy dissipation of supported graphene using amplitude modulation atomic force microscopy. Nanotechnology, 28(46), 465708. https://doi.org/10.1088/1361-6528/aa8e3b
Wahab, H., Heil, J., Tyrrell, A. S., Muller, T., Ackerman, J., Kotthoff, L., & Johnson, P. A. (2024). Optimization of structural and electrical properties of graphene-based TiO2 thin-film nanocomposites using machine learning. Journal of Materials Chemistry C, 12(6), 1389–1399. https://doi.org/10.1039/D3TC05069H
Wei, X., Wang, X., Tan, J., Sun, X., Jiang, H., & Chen, W. (2016). Graphene nanosheets–Decorated silicon composites as high-performance anodes for lithium-ion batteries. Energy Storage Materials, 3, 30–37. https://doi.org/10.1016/j.ensm.2015.12.001
Yang, C., Tang, C., Zhou, Q., Hu, J., Xue, X., Huang, Y., & Wang, C. (2020). Mechanically strengthened graphene aerogels via rational assembly for enhanced thermal insulation. ACS Applied Materials & Interfaces, 12(36), 40467–40475. https://doi.org/10.1021/acsami.0c09481
Zhao, H., Zhou, L., & Zhang, C. (2022). Molecular insights into the impact of graphene oxide on microbial cell membranes. Environmental Science: Nano, 9(4), 1116–1126. https://doi.org/10.1039/D2EN00167E
Zhu, J., Li, S., & Zeng, X. (2023). Raman spectroscopic insights into carbon nanomaterials: Techniques, challenges, and applications. Carbon Trends, 10, 100257. https://doi.org/10.1016/j.cartre.2023.100257
Zhu, X., Liu, S., Yang, Y., Wang, Y., Sun, H., Chen, H., … & Wang, C. (2019). Multi-scale understanding of graphene-based membranes: From fundamentals to advanced water purification applications. Nano Research, 12(1), 183–200. https://doi.org/10.1007/s12274-018-2236-6
Copyright (c) 2025 Journal of Engineering and Technological Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.








