Wide Bandgap SiC-Based Oxide Thickness Optimization by Computation and Simulation using Enhanced Electron Mobility with Regulated Gate Voltage Technique for High-Power 4H-SiC MOSFET
Downloads
This work analyzed the interactions between gate oxide thickness (Tox), voltage dependence, and electron mobility (E-mobility) in the inversion layer, which controls the electron movement properties of 4H-SiC/SiO2. This paper also presents a calculation of gate oxide thickness in correlation with gate voltage mainly for high-voltage applications. The results of this work revealed that at low resistance, E-mobility increases with gate voltage and oxide thickness, which saturates at the point of value. Coulomb scattering and surface phonons at the inversion region of SiC MOSFETs are regarded as the two primary factors that limit E-mobility in these devices. In addition, the high interface trap density (Dit) causes a decrease in E-mobility. The findings from this study confirmed that the computed values of oxide thickness and simulation-based oxide thickness with regulated gate voltages have the least variation below 1%, asserting experimental and theoretical outcomes about the role of oxide thickness and electron movement at the 4H-SiC/SiO2 interfaces. These results indicate that understanding the E-mobility effect on oxide thickness in the SiC MOSFET inversion layer according to gate voltage is important, particularly in achieving an optimal 4H-SiC/SiO2 interface for high-power applications.
Zhang, H., Tolbert, L.M. & Ozpineci, B., Impact of SiC Devices on Hybrid Electric and Plug-in Hybrid Electric Vehicles, IEEE Trans. Ind. Appl., 47(2), pp. 912-921, 2011.
Pathak, A.D. & Ochi, S., Unique MOSFET/IGBT Drivers and Their Applications in Future Power Electronic Systems, Proc. Int. Conf. Power Electron. Drive Syst., 1, pp. 85-88, 2003.
Buffolo, M., Favero, D., Marcuzzi, A., De Santi, C., Meneghesso, G., Zanoni, E. & Meneghini, M., Review and Outlook on GaN and SiC Power Devices: Industrial State-of-the-Art, Applications, and Perspectives, IEEE Transactions on Electron Devices, 71(3), pp. 1344-1355, March 2024.
Matocha, K., Ji, I.H. & Chowdhury, S., Reliability and Ruggedness of Planar Silicon Carbide MOSFETs, Mater. Sci. Forum, 963, pp. 782-787,2019.
Zibo, C. & Alex, Q.H., Extreme High Efficiency Enabled by Silicon Carbide (SiC) Power Devices, Materials Science in Semiconductor Processing, 172(5), 2024.
Agarwal, A. Ryu, S.-H. & Palmour, J., Power MOSFETs in 4H-SiC: Device Design and Technology, Choyke, W.J., Matsunami, H., Pensl, G. (eds) Silicon Carbide, Advanced Texts in Physics. Springer, Berlin, Heidelberg, pp. 785–811,2004.
Kumar, S. & Akhtar, J., Thermal Oxidation of Silicon Carbide (SiC) – Experimentally Observed Facts, Silicon Carbide - Mater. Process. Appl. Electron. Devices, Moumita Mukherjee(eds), Intech Open, London, 2011.
Agarwal, A.K., Seshadri, S. & Rowland, L.B., Temperature Dependence of Fowler-Nordheim Current in 6H- and 4H-SiC MOS Capacitors, IEEE Electron Device Lett., 18(12), pp. 592–594,1997.
Fan, J.C. & Lee, S.F., Effect of Oxide Layer in Metal-Oxide-Semiconductor Systems, MATEC Web Conf., 67(0–4), 2016.
Wang, Z., Zhang, Z., Shao, C., Robertson, J., Liu, S. & Guo, Y., Defects and Passivation Mechanism of the Suboxide Layers at SiO/4H-SiC (0001) Interface: A First-Principles Calculation, IEEE Trans. Electron Devices, 68(1), pp. 288-293,2021.
Moon, J.H., Yim, J.H., Seo, H.S., Lee, D.H., Song, H.K., Heo, J., Kim, H.J., Cheong, K.Y., Bahng, W. & Kim, N. K., Effect of Postoxidation Annealing on High Temperature Grown SiO2/4H-SiC Interfaces, J. Electrochem. Soc.,157(2), H196, 2010.
Gao, H., Wang, H., Niu, M., Su, L., Fan, X., Wen, J. & Wei, Y., Oxidation Simulation Study of Silicon Carbide Nanowires: A Carbon-rich Interface State, Appl. Surf. Sci., 493(1), pp. 882-888,2019.
Li, W., Zhao, J. & Wang, D., Structural and Electronic Properties of the Transition Layer at the SiO2 / 4H-SiC Interface, AIP Adv., 017122(5), pp. 1-9, 2015.
Ju, Y., Bouvet, D., Stark, R., Woerle, J. & Grossner, U., 4H-SiC Power VDMOSFET Manufacturing Utilizing POCl3 Post Oxidation Annealing, Mater. Sci. Forum, 1004(7), pp. 559–564, 2020.
Kobayashi, T., Suda, J. & Kimoto, T., Reduction of Interface State Density in SiC (0001) MOS Structures by Post-oxidation Ar Annealing at High Temperature, AIP Adv.,7(4), 2017.
Arshad, M., Jamil, E., Shuja, A., Qayyum, F. & Hassan, G., Modelling and Simulation of Design Variants for the Development of 4H-SiC Thyristors, Silicon, 14, pp. 10313-10325,2022.
Jeong, J.H., Seok, O. & Lee, H.J., Analysis of Electrical Characteristics in 4H-SiC Trench-gate MOSFETs with Grounded Bottom Protection p-well Using Analytical Modeling, Appl. Sci., 11(24), pp. 12075, 2021.
Tilak, V., Inversion Layer Electron Transport in 4H-SiC Metal-oxide-semiconductor Field-effect Transistors, Phys. Status Solidi Appl. Mater. Sci.,206(10), pp. 2391-2402,2009.
Noguchi, M., Iwamatsu, T. , Amishiro, H., Watanabe, H. , Miura, N. & Kita, K., Invited: Limiting Factors of Inversion Layer Mobility in Si-face 4H-SiC MOSFETs,2019 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK), Kyoto, Japan, pp. 57-62, 2019.
Tanaka, H. & Mori, N., Modeling of Carrier Scattering in MOS Inversion Layers with Large Density of Interface States and Simulation of Electron Hall Mobility in 4H-SiC MOSFETs, Jpn. J. Appl. Phys., 59(3), pp. 031006, 2020.
Taha, W., Comparative Study on Silicon Carbide (SiC) Polytypes in High Voltage Devices, 2021 International Conference on Sustainable Energy and Future Electric Transportation (SEFET), Hyderabad, India, pp. 1-6, 2021.
Liguori, R., Usta, H., Fusco, S., Facchetti, A., Licciardo, G. D., Di Benedetto, L. & Rubino, A., Insights into Interface Treatments in p-Channel Organic Thin-Film Transistors Based on a Novel Molecular Semiconductor, IEEE Trans. Electron Devices, 64(5), pp. 2338-2344, 2017.
Ishihara, T. & Sano, N., Coulomb and Phonon Scattering Processes in Metal-oxide-semiconductor Inversion Layers: Beyond Matthiessen’s Rule, Japanese J. Appl. Physics, 44(4), pp. 1682-1686, 2005.
Rozen, J., Ahyi, A. C., Zhu, X., Williams, J.R. & Feldman, L. C., Scaling between channel mobility and interface state density in SiC MOSFETs, IEEE Trans. Electron Devices, 58(11), pp. 3808-3811, 2011.
Poobalan, B. & Cheong, K.Y., Thermally Grown Native Oxide Thin Films on SiC, Two-Dimensional Nanostructures for Energy-Related Applications, Cheong, K.Y. (ed.), Two-Dimensional Nanostructures for Energy-Related Applications (1st ed.), CRC Press. pp. 332-376, 2017.
Gurfinkel, M., Horst, J.C., Suehle, J. S., Bernstein, J., Shapira, Y., Matocha, K.S., Dunne, G. & Beaupre, R.A., Time-Dependent Dielectric Breakdown of 4H-SiC/SiO2 MOS Capacitors, IEEE Trans. Device Mater. Reliab., 8(4), pp. 635-641,2008.
Jung, J. & Ulanski, J., Charge Carrier Transport in Organic Semiconductor Composites - models and Experimental Techniques, Solut. Components Org. Electron. Devices, Ulanski,J. Luszczynska,B., Matyjaszewskipp, K.(eds.), Wiley Online Library,pp.309-363,2019.
Su, H., Shi, X., Yuan, J., Wan, Y., Cheng, E., Xi, C., Pi, L., Wang, X., Zou, Z., Yu, N., Zhao, W., Li, S., & Guo, Y., Multiple Weyl fermions in the noncentrosymmetric semimetal LaAlSi,Phys. Rev. B, 103(16), pp. 1-8, 2021.
Ferry, D.K., Ohm’s law in a quantum world, Science, 335(6064) ,pp. 45-46, 2021.
Pearton, S.J., Ren, F. , Tadjer, M. and Kim, J., Perspective: Ga2O3 for Ultra-high Power Rectifiers and MOSFETS, J. Appl. Phys.,124(22), 2018.
Gupta, S.K. & Akhtar, J., Thermal Oxidation of Silicon Carbide (SiC) – Experimentally Observed Facts, Mukherjee M. Silicon Carbide—Materials, Processing and Applications in Electronic Devices. Rijeka (eds.): InTech, 207,2011.
Chandrasekar, L. & Pradhan, K.P., Computationally Efficient Region-Wise Potential- Based Extremely Closed-Form Analytical Modeling of B/N Substitution Doped GFETs, IEEE Trans. Electron Devices, 69(8), pp. 4708-4716, 2022.
Baliga, B.J., Silicon Carbide Power Devices: Progress and Future Outlook, IEEE Journal of Emerging and Selected Topics in Power Electronics, 11(3), pp. 2400-2411, 2023.
Copyright (c) 2024 Journal of Engineering and Technological Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.








