Physicochemical Properties and Sensory Acceptability of Fermented Roasted Robusta Coffee (Coffea canephora L.) Beans
Downloads
Spontaneous fermentation is becoming ever more elusive because of vast natural microbiota profiles that affect geographical region, climate, and applications of agrichemicals. This study aimed to identify the physicochemical and sensory properties of local planted (Serdang, Malaysia) Robusta (Coffea canephora L.) coffee beans after undergoing different spontaneous wet fermentation (SWF) periods i.e., 0 days as control, 3 days, and 5 days. The hardness decreased significantly (p < 0.05) by 80 to 90% in roasted fermented roasted Robusta coffee (FRRC) beans. The carbohydrate content was significantly higher (p < 0.05) at 9.4%, but protein and crude fibers were significantly (p < 0.05) lower at 31% and 9.7%, respectively. While the FRRC brew displayed deeper lightness (L*31.983), the FRRC powder displayed lighter lightness (L*49.553). The total soluble solid (TSS) was around 21% higher in FRRC and the water solubility index (WSI) had equivalent outcomes at about 8% higher in FRRC. Rheological analysis showed that the coffee fluid exhibited a shear-thickening property with fluid elastic components greater than viscosity. FRRC beans received higher ratings (score > 6) than non-FRRC beans (score between 5 and 6) in the consumer sensory evaluations.
Lemos, M.F., Perez, C., da Cunha, P.H.P., Filgueiras, P.R., Pereira, L.L., Almeida da Fonseca, A.F. & Scherer, R., Chemical and Sensory Profile of New Genotypes of Brazilian Coffea canephora, Food Chem. 310, Nov. 2019.
Caporaso, N., Whitworth, M.B., Cui, C. & Fisk, I.D., Variability of Single Bean Coffee Volatile Compounds of Arabica and Robusta Roasted Coffees Analysed by SPME-GC-MS, Food Res. Int., 108, pp 628-640, Apr. 2018.
Farah, A., Coffee Consumption and Health Implication, Royal Society of Chemistry, 2019.
Wongsa, P., Khampa, N., Horadee, S., Chaiwarith, J. & Rattanapanone, N., Quality and Bioactive Compounds of Blends of Arabica and Robusta Spray-dried Coffee, Food Chem., 283, pp 579-587, Jan. 2019.
Babova, O., Occhipinti, A. & Maffei, M.E., Chemical Partitioning and Antioxidant Capacity of Green Coffee (Coffea arabica and Coffea canephora) of Different Geographical Origin, Phytochemistry 123, pp. 33-39, Feb. 2016.
Konieczka, P.P., Aliaño-González, M.J., Ferreiro-González, M., Barbero, G.F. & Palma, M., Characterization of Arabica and Robusta Coffees by Ion Mobility Sum Spectrum, Sensors., 20(3123), May. 2020.
Lasekan, O., Influence of Processing Conditions on the Physicochemical Properties and Shelf-Life of Spray-Dried Palm Sugar (Arenga pinnata) Powder, Dry. Technol., 32, pp. 398-407, Feb. 2014.
Caparino, O. A., Tang, J., Nindo, C.I., Sablani, S.S., Powers, J.R. & Fellman, J.K. Effect of Drying Methods on the Physical Properties and Microstructures of Mango (Philippine ‘Carabao’ var.) powder. J. Food Eng., 111(1) pp. 135-148, Feb. 2012.
Cuq, B., Rondet, E. & Abecassis, J., Food Powders Engineering, between Knowhow and Science: Constraints, Stakes and Opportunities, Powder Technol., 208, pp. 244-251, Aug. 2010.
Ishwarya, S. P. & Anandharamakrishnan, C., Spray-Freeze-Drying Approach for Soluble Coffee Processing and Its Effect on Quality Characteristics, J. Food Eng., 149, pp. 171-180, Oct 2014.
Arya, M. & Rao, L.J. M., An Impression of Coffee Carbohydrates, Crit. Rev. Food Sci. Nutr., 47(1), pp. 51-67, Jan. 2007.
Yeager, S.E., Batali, M.E., Guinard, J.X. & Ristenpart, W.D., Acids in Coffee: A Review of Sensory Measurements and Meta-analysis of Chemical Composition, Crit. Rev. Food Sci. Nutr., 63(8), pp. 1010-1036, Sep. 2023.
Maeztu, L., Andueza, S., Ibañez, C., De Peña, M.P., Bello, J. & Cid, C., Multivariate Methods for Characterization and Classification of Espresso Coffees from Different Botanical Varieties and Types of Roast by Foam, Taste, and Mouthfeel. J Agric Food Chem., 49(10), pp. 4743-4747, Sep. 2001.
Elhalis, H., Cox, J., Frank, D. & Zhao, J., The Crucial Role of Yeasts in the Wet Fermentation of Coffee Beans and Quality, Int. J. Food Microbiol., 333(2), 108796, Jul. 2020.
Evangelista, S.R., Miguel, M.G. da C.P., Silva, C.F., Pinheiro, A.C.M. & Schwan, R.F., Microbiological Diversity Associated with the Spontaneous Wet Method of Coffee Fermentation, Int. J. Food Microbiol., 210, pp. 102-112, Jun. 2015.
Bauer, D., Abreu, J., Jordão, N., da Rosa, J. S., Freitas-Silva, O. & Teodoro, A., Effect of Roasting Levels and Drying Process of Coffea Canephora on the Quality of Bioactive Compounds and Cytotoxicity, Int. J. Mol. Sci., 19(11), 3407, Oct. 2018.
Sualeh, A., Mohammed, A. & Endris, S., Processing Method, Variety and Roasting Duration Effect on physical Quality Attributes of Roasted Arabica coffee Beans, Sky J. Agric. Res., 3, pp. 53-61, May. 2014.
Pittia, P., Nicoli, M. C. & Sacchetti, G., Effect of moisture and water activity on textural properties of raw and Roasted Coffee Beans, J. Texture Stud., 38(4), pp. 116-134, Jan. 2007.
Yüksel, A.N., Özkara Barut, K.T. & Bayram, M., The Effects of Roasting, Milling, Brewing and Storage Processes on the Physicochemical Properties of Turkish coffee, LWT - Food Sci. Technol., 131, 109711, Jun. 2020.
Tarzia, A., dos Santos Scholz, M.B. & de Oliveira Petkowicz, C.L., Influence of the Postharvest Processing Method on Polysaccharides and Coffee Beverages. Int. J. Food Sci. Technol., 45(10), pp. 2167-2175, Jul. 2010.
Chun, Y., Ko, Y.G., Do, T., Jung, Y., Kim, S.W., & Su Choi, U., Spent Coffee Grounds: Massively Supplied Carbohydrate Polymer Applicable to Electrorheology, Colloids Surfaces A Physicochem. Eng. Asp., 562, pp. 392-401, Feb. 2019.
Coffee Quality Institute & Uganda Coffee Development, Fine Robusta Standards and Protocols, Coffee Quality Institute, 2019.
Getaneh, E., Fanta, S.W. & Satheesh, N., Effect of Broken Coffee Beans Particle Size, Roasting Temperature, and Roasting Time on Quality of Coffee Beverage, J. Food Qual., 2020, 8871577, Dec. 2020.
Chindapan, N., Soydok, S. & Devahastin, S., Roasting Kinetics and Chemical Composition Changes of Robusta Coffee Beans During Hot Air and Superheated Steam Roasting, J. Food Sci., 84(2), pp. 292-302, Feb. 2019.
Lee, L.W., Cheong, M.W., Curran, P., Yu, B. & Liu, S.Q., Modulation of Coffee Aroma via the Fermentation of Green Coffee Beans with Rhizopus oligosporus: II. Effects of different roast levels, Food Chem., 211, pp. 925-936, May. 2016.
Pramudita, D., Araki, T., Sagara, Y. & Tambunan, A.H., Roasting and Colouring Curves for Coffee Beans with Broad Time-Temperature Variations. Food Bioprocess Technol. 10(8), pp. 1509-1520, Apr. 2017.
Van Cuong, T., Hong Ling, L., Kang Quan, G., Jin, S., Shu Jie, S., Le Linh, T. & Duc Tiep, T., Effect of Roasting Conditions on Concentration in Elements of Vietnam Robusta Coffee. Acta Univ. Cibiniensis, Ser. E Food Technol., 18, pp. 19-34, 2014.
Elhalis, H., Cox, J., Frank, D. & Zhao, J., Microbiological and Biochemical Performances of Six Yeast Species as Potential Starter Cultures for Wet Fermentation of Coffee Beans. LWT - Food Sci. Technol., 137(110430), Oct. 2021.
Lee, L. W., Cheong, M. W., Curran, P., Yu, B. & Liu, S. Q., Coffee fermentation and flavor - An intricate and delicate relationship, Food Chem., 185, pp. 182-191, Apr. 2015.
Poláková, K., Bobková, A., Demianová, A., Belej, Ľ., Jurčaga, L., Bobko, M., Žiak, M., Changes in Textural Properties and Color due to the Processing Method of Green Coffea Arabica. J. Microbiol. Biotechnol. Food Sci., 12(e9458), Dec. 2022.
Rocculi, P., Sacchetti, G., Venturi, L., Cremonini, M., Dalla Rosa, M., & Pittia, P., Role of Water State and Mobility on the Antiplasticization of Green and Roasted Coffee Beans, J. Agric. Food Chem., 59(15), pp. 8265-8271 Jun. 2011.
Shibamoto, T., Volatile Chemicals from Thermal Degradation of Less Volatile Coffee Components, Coffee in Health and Disease Prevention, Preedy. V.R., Academic Press, pp. 129-135, 2015.
Lee, L.W., Tay, G.Y., Cheong, M.W., Curran, P., Yu, B., Liu, S.Q. & Liu, S.Q., Modulation of the volatile and non-volatile profiles of coffee fermented with Yarrowia lipolytica: I. Green coffee, LWT - Food Sci. Technol., 80, pp. 225–232, Nov. 2016.
Munyendo, L.M., Njoroge, D.M., Owaga, E.E. & Mugendi, B., Coffee Phytochemicals and Post-harvest Handling—A Complex and Delicate Balance, J. Food Compos. Anal., 102(2021), 103995, May. 2021.
Aditiawati, P., Astuti, D.I., Kriswantoro, J.A., Khanza, S.M., Kamarisima, Irifune, T. & Putri, S.P., GC/MS-based Metabolic Profiling for the Evaluation of Solid State Fermentation to Improve Quality of Arabica Coffee Beans. Metabolomics, 16(5), 57, Apr. 2020.
Kurniawati, N., Meryandini, A. & Sunarti, T.C., Introduction of Actinomycetes Starter on Coffee Fruits Fermentation to Enhance Quality of Coffee Pulp, Emirates J. Food Agric., 28(3), pp. 188-195, Feb. 2016.
Muronetz, V. I., Barinova, K., Kudryavtseva, S., Medvedeva, M., Melnikova, A., Sevostyanova, I. & Sova, M., Natural and Synthetic Derivatives of Hydroxycinnamic Acid Modulating the Pathological Transformation of Amyloidogenic Proteins. Molecules, 25(4647), Oct. 2020.
Pak, F.E., Gropper, S., Dai, W.D., Havkin-Frenkel, D. & Belanger, F.C., Characterization of a Multifunctional Methyltransferase from the orchid Vanilla planifoli, Plant Cell Rep., 22(12), pp. 959-966, Apr. 2004.
Osorio Pérez, V., Álvarez-Barreto, C.I., Matallana, L.G., Acuña, J.R., Echeverri, L. F., & Imbachí, L.C., Effect of Prolonged Fermentations of Coffee Mucilage with Different Stages of Maturity on the Quality and Chemical Composition of the bean, Fermentation, 8(10), 519, Oct. 2022.
Febrianto, N.A. & Zhu, F., Coffee Bean Processing: Emerging Methods and Their Effects on Chemical, Biological and Sensory Properties, Food Chem., 412, 135489, Jan. 2023.
Budryn, G., Nebesny, E., Zyzelewicz, D., Oracz, J., Miśkiewicz, K. & Rosicka-Kaczmarek, J., Influence of Roasting Conditions on Fatty Acids and Oxidative Changes of Robusta coffee oil, Eur. J. Lipid Sci. Technol., 114(9), pp. 1052-1061, Apr. 2012.
Kwak, H. S., Jeong, Y. & Kim, M., Effect of Yeast Fermentation of Green Coffee Beans on Antioxidant Activity and Consumer Acceptability, J. Food Qual., 2018, 5967130, Mar. 2018.
Murata, M., Browning and pigmentation in food through the Maillard reaction, Glycoconj. J., 38(3), pp. 283-292, Sep. 2020.
Acidri, R., Sawai, Y., Sugimoto, Y., Handa, T., Sasagawa, D., Masunaga, T. & Nishihara, E., Phytochemical Profile and Antioxidant Capacity of Coffee Plant Organs compared to Green and Roasted Coffee Beans, Antioxidants, 9(2), 93, Jan. 2020.
Herawati, D., Giriwono, P.E., Dewi, F.N.A., Kashiwagi, T. & Andarwulan, N., Critical Roasting Level Determines Bioactive Content and Antioxidant Activity of Robusta Coffee Beans, Food Sci. Biotechnol., 28(1), pp. 7-14, Jul. 2018.
Pereira, G.V. de M., Neto, D.P. de C., Júnior, A.I.M., Vásquez, Z.S., Medeiros, A.B.P., Vandenberghe, L.P. S., & Soccol, C.R., Exploring the Impacts of Postharvest Processing on the Aroma Formation of Coffee Beans – A Review, Food Chem., 272(2019), pp. 441-452, Aug 2018.
Spiller, M.A., The Chemical Components of Coffee, in Spiller, G.A. (ed.), Caffeine, CRC Press, 1998.
Pumilia, G., Cichon, M.J., Cooperstone, J.L., Giuffrida, D., Dugo, G. & Schwartz, S.J., Changes in Chlorophylls, Chlorophyll Degradation Products and Lutein in Pistachio Kernels (Pistacia vera L.) during Roasting, Food Res. Int., 65(2014), pp. 193-198, Jun. 2014.
Nunes, F.M. & Coimbra, M.A. Role of Hydroxycinnamates in Coffee Melanoidin Formation, Phytochem. Rev., 9, pp. 171-185, Oct. 2010.
Mendes, L.C., De Menezes, H.C., Aparecida, M. & Da Silva, A.P., Optimization of the Roasting of Robusta Coffee (C. canephora conillon) using Acceptability Tests and RSM, Food Qual. Prefer., 12(2001), pp. 153-162, Oct. 2000.
Langner, E. & Rzeski, W., Properties of Melanoidins: A Review. Int. J. Food Prop., 17(2), pp. 344-353, Oct. 2013.
Fischer, M., Reimann, S., Trovato, V. & Redgwell, R.J., Polysaccharides of Green Arabica and Robusta Coffee Beans, Carbohydr. Res., 330(1), pp. 93-101. Jan. 2001.
Morales, F. J., Somoza, V. & Fogliano, V., Physiological Relevance of Dietary Melanoidins, Amino Acids, 42(4), pp. 1097-1109, Oct. 2010.
Dias, R.C.E. & Benassi, M. de T., Discrimination between Arabica and Robusta Coffees using Hydrosoluble Compounds: Is the Efficiency of the Parameters Dependent on the Roast Degree?, Beverages, 1(3), pp. 127-139, Jun. 2015.
Kaleem, M.A., Alam, M.Z., Khan, M., Jaffery, S.H.I. & Rashid, B., An Experimental Investigation on Accuracy of Hausner Ratio and Carr Index of Powders in Additive Manufacturing Processes, Met. Powder Rep., 76(1), pp. S50-S54, Jul. 2020.
Berk, Z., Food Process Engineering and Technology, Academic Press Inc., 2009.
Deotale, S.M., Dutta, S., Moses, J.A. & Anandharamakrishnan, C., Stability of Instant Coffee Foam by Nanobubbles Using Spray-Freeze Drying Technique, Food Bioprocess Technol., 13(11), pp. 1866-1877, Sep. 2020.
Saker, A., Cares-Pacheco, M.G., Marchal, P. & Falk, V., Powders Flowability Assessment in Granular Compaction: What about the Consistency of Hausner Ratio?, Powder Technol., 354, pp. 52-63, May. 2019.
Hasanzadeh, M., Mottaghitalab, V. & Rezaei, M., Rheological and Viscoelastic Behavior of concentrated Colloidal Suspensions of Silica Nanoparticles: A Response Surface Methodology Approach, Adv. Powder Technol., 26(6), pp. 1570-1577, Sep. 2015.
Rapp, B. E., Microfluidics: Modeling, Mechanics and Mathematics, William Andrew, 2016.
Rojas‐torres, S.A., Quintana, S.E. & García‐zapateiro, L.A., Natural Yogurt Stabilized with Hydrocolloids from Butternut Squash (Cucurbita moschata) Seeds: Effect on Physicochemical, Rheological Properties and Sensory Perception, Fluids, 6(251), Jul. 2021.
Douglas, J.F., Weak and Strong Gels and the Emergence of the Amorphous Solid State, Gels 4(1), Feb. 2018.
Ikeda, S. & Nishinari, K., ‘Weak gel’-type Rheological Properties of Aqueous Dispersions of Nonaggregated κ-carrageenan Helices, J. Agric. Food Chem., 49(9), pp. 4436-4441, Aug. 2001.
Banerjee, S. & Bhattacharya, S. Food Gels: Gelling Process and New Applications, Crit. Rev. Food Sci. Nutr., 52(4), pp. 334-346, Jun. 2012.
Fattahi, A., Petrini, P., Munarin, F., Shokoohinia, Y., Golozar, M.A., Varshosaz, J. & Tanzi, M.C., Polysaccharides Derived from Tragacanth as Biocompatible Polymers and Gels., J. Appl. Polym. Sci., 129(4), pp. 2092-2102, Jan. 2013.
Simas-Tosin, F.F., Barraza, R.R., Petkowicz, C.L.O., Silveira, J.L.M., Sassaki, G.L., Santos, E.M.R. & Lacomini, M., Rheological and Structural Characteristics of Peach Tree Gum Exudate, Food Hydrocoll., 24(5), pp. 486-493, Jan. 2010.
Lawless, H. T., Popper, R. & Kroll, B.J.A., Comparison of the Labeled Magnitude (LAM) Scale, an 11-point Category Scale and the Traditional 9-point Hedonic Scale, Food Qual. Prefer., 21(1), pp. 4-12, Jul. 2010.
Lim, J., Hedonic Scaling: A Review of Methods and Theory, Food Qual. Prefer., 22(8), pp. 733-747, Jun. 2011.
Stokes, C.N., O’Sullivan, M.G. & Kerry, J.P., Hedonic and Descriptive Sensory Evaluation of Instant and Fresh Coffee Products, Eur. Food Res. Technol., 243(2), pp. 331-340. Jul. 2016.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.








