A Cobalt-based Nanostructured Electrode Prepared by a Fast Chemical Method

Downloads
The demand for nanomaterials is rapidly increasing in most applications, such as energy storage devices. Many nanomaterial synthesis methods are energy-consuming methods requiring high temperatures, prolonged reaction time, complicated steps, or expensive equipment. Herein, nanostructures of cobalt hydroxide chloride, Co2(OH)3Cl, have been directly deposited on carbon cloth microfibers by a fast and simple step of chemical bath deposition. Co2(OH)3Cl nanoparticles appear in only 10 minutes of the deposition time, then the nanoflakes are grown in 60 minutes, as imaged by scanning electron microscope. The crystal structure of Co2(OH)3Cl is characterized using X-ray diffraction, while the results of energy-dispersive X-ray spectroscopy confirm the elemental analysis. The electrochemical energy storage mechanism of Co2(OH)3Cl electrode in potassium hydroxide electrolyte depends on the semi-reversible redox reactions as investigated by the cyclic voltammetry and by the galvanostatic charge-discharge measurements. As a result, the prepared electrode in 60 min exhibits a maximum specific capacitance of 313 F/g versus 293 F/g for the prepared electrode in 10 min, both at 1 A/g. The good electrochemical performance is attributed to several features, including the nanoflakes morphology that enables electrolyte ions to penetrate the electrode freely, the well-crystallized structure, and the solid electronic path between the current collector and the active material indicated by the Nyquist plot of electrochemical impedance spectroscopy. Our cost-effective synthesis of cobalt hydroxide chloride nanostructures on woven substrates offers flexible binder-free electrodes in alkaline electrolytes. This research opens up the potential for these materials to be used as a power source in smart textiles and wearable electronics, thereby contributing to the advancement of these fields.
Alhebshi, N. A., & Alshareef, H. N. (2015). Ternary Ni-Cu-OH and Ni-Co-OH electrodes for electrochemical energy storage. Materials for Renewable and Sustainable Energy, 4, 21, 1–9. https://doi.org/10.1007/s40243-015-0064-7
Alhebshi, N. A., Rakhi, R. B., & Alshareef, H. N. (2013). Conformal coating of Ni(OH)2 nanoflakes on carbon fibers by chemical bath deposition for efficient supercapacitor electrodes. Journal of Materials Chemistry A, 1(47), 14897–14903. https://doi.org/10.1039/c3ta12936e
Asghar, A., Khan, K., Hakami, O., Alamier, W. M., Ali, S. K., Zelai, T., . . . Al-Harthi, E. A. (2024). Recent progress in metal oxide-based electrode materials for safe and sustainable variants of supercapacitors. Frontiers in Chemistry, 12, 1402563. https://doi.org/10.3389/fchem.2024.1402563
Cao, L., Xu, F., Liang, Y. Y., & Li, H. L. (2004). Preparation of the novel nanocomposite Co(OH)2/ultra-stable Y zeolite and its application as a supercapacitor with high energy density. Advanced Materials, 16(20), 1853–1857. https://doi.org/ 10.1002/adma.200400183
Chen, M., Zhou, F., Wan, B., Tu, L., Rang, Y., Mao, B., . . . Li, L. (2024). Polypyrrole-assisted surface-oxidized carbon cloth for high-performance flexible solid-state supercapacitors. Journal of Energy Storage, 99, 113198. https://doi.org/10.1016/j.est.2024.113198
Ganguli, S., Koppisetti, H., Ghosh, S., Biswas, T., & Mahalingam, V. (2019). Paradoxical Observance of "Intrinsic" and "Geometric" Oxygen Evolution Electrocatalysis in Phase-Tuned Cobalt Oxide/Hydroxide Nanoparticles. ACS Applied Nano Materials, 2(12), 7957–7968. https://doi.org/10.1021/acsanm.9b01990
Hu, X. R., Wang, Y., Wu, Q. S., & Li, J. F. (2021). Review of cobalt-based nanocomposites as electrode for supercapacitor application. Ionics, 27(11), 4573-4618. doi:10.1007/s11581-021-04319-z
Jing, M., Hou, H., Yang, Y., Zhu, Y., Wu, Z., & Ji, X. (2015). Electrochemically alternating voltage tuned Co2MnO4/Co hydroxide chloride for an asymmetric supercapacitor. Electrochimica Acta, 165, 198–205. https://doi.org/10.1016/j.electacta.2015.03.032
Liu, S. Y., Yang, J., Chen, P., Wang, M., He, S. J., Wang, L., & Qiu, J. S. (2024). Flexible Electrodes for Aqueous Hybrid Supercapacitors: Recent Advances and Future Prospects. Electrochemical Energy Reviews, 7(1), 25. https://doi.org/10.1007/s41918-024-00222-z
Liu, X. Q., Xu, W., Zheng, D. Z., Li, Z. F., Zeng, Y. X., & Lu, X. H. (2020). Carbon cloth as an advanced electrode material for supercapacitors: progress and challenges. Journal of Materials Chemistry A, 8(35), 17938-17950. https://doi.org/10.1039/d0ta03463k
Liu, Y., Jiang, S. P., & Shao, Z. (2020). Intercalation pseudocapacitance in electrochemical energy storage: recent advances in fundamental understanding and materials development. Materials Today Advances, 7, 100072. https://doi.org/10.1016/j.mtadv.2020.100072
Luo, F. J., San, X. G., Wang, Y. S., Meng, D., & Tao, K. (2024). Layered double hydroxide-based electrode materials derived from metal-organic frameworks: synthesis and applications in supercapacitors. Dalton Transactions, 53(25), 10403–10415. https://doi.org/10.1039/d4dt01344a
Ma, J., Yuan, T., He, Y.-S., Wang, J., Zhang, W., Yang, D., . . . Ma, Z.-F. (2014). A novel graphene sheet-wrapped Co2(OH)3Cl composite as a long-life anode material for lithium ion batteries. Journal of Materials Chemistry A, 2(40), 16925–16930. https://doi.org/10.1039/C4TA03857F
Mahmood, N., Tahir, M., Mahmood, A., Zhu, J., Cao, C., & Hou, Y. (2015). Chlorine-doped carbonated cobalt hydroxide for supercapacitors with enormously high pseudocapacitive performance and energy density. Nano Energy, 11, 267–276. https://doi.org/10.1016/j.nanoen.2014.11.015
Malavekar, D., Pujari, S., Jang, S., Bachankar, S., & Kim, J. H. (2024). Recent Development on Transition Metal Oxides-Based Core-Shell Structures for Boosted Energy Density Supercapacitors. Small, 20(31), 2312179. https://doi.org/10.1002/smll.202312179
Mansournia, M., & Rakhshan, N. (2017). Hydrothermal synthesis and tuning of size and morphology of α-Co(OH)2 and α-Co2(OH)3Cl nanostructures as precursors for nanosized Co3O4. Ceramics International, 43(9), 7282-7289. https://doi.org/10.1016/j.ceramint.2017.03.025
Masikhwa, T. M., Dangbegnon, J. K., Bello, A., Madito, M. J., Momodu, D., Barzegar, F., & Manyala, N. (2016). Effect of growth time of hydrothermally grown cobalt hydroxide carbonate on its supercapacitive performance. Journal of Physics and Chemistry of Solids, 94, 17–24. https://doi.org/10.1016/j.jpcs.2016.03.004
Meena, J., Sivasubramaniam, S. S., David, E., & Santhakumar, K. (2024). Green supercapacitors: review and perspectives on sustainable template-free synthesis of metal and metal oxide nanoparticles. RSC Sustainability, 2(5), 1224–1245. https://doi.org/10.1039/d4su00009a
Mishra, A., Shetti, N. P., Basu, S., Reddy, K. R., & Aminabhavi, T. M. (2019). Carbon Cloth-based Hybrid Materials as Flexible Electrochemical Supercapacitors. ChemElectroChem, 6(23), 5771–5786. https://doi.org/10.1002/celc.201901122
Patel, A. R., Sereda, G., & Banerjee, S. (2021). Synthesis, Characterization and Applications of Spinel Cobaltite Nanomaterials. Current Pharmaceutical Biotechnology, 22(6), 763–782. https://doi.org/10.2174/1389201021666201117122002
Pore, O. C., Fulari, A. V., Shejwal, R. V., Fulari, V. J., & Lohar, G. M. (2021). Review on recent progress in hydrothermally synthesized MCo2O4/rGO composite for energy storage devices. Chemical Engineering Journal, 426, 32. https://doi.org/10.1016/j.cej.2021.131544
Shaheen, I., Akkinepally, B., Hussain, I., Hussain, S., Rosaiah, P., Qureshi, A., & Niazi, J. H. (2024). Fabrication of MXene/cellulose composite-based flexible supercapacitor: Synthesis, properties, and future perspectives. Journal of Energy Storage, 87, 111513. https://doi.org/10.1016/j.est.2024.111513
Shalini, S., Naveen, T. B., Durgalakshmi, D., Balakumar, S., & Rakkesh, R. A. (2024). Progress in flexible supercapacitors for wearable electronics using graphene-based organic frameworks. Journal of Energy Storage, 86, 111260. https://doi.org/10.1016/j.est.2024.111260
Taberna, P.-L., & Simon, P. (2013). Electrochemical Techniques. In Supercapacitors (pp. 111–130).
Wu, D., Xiao, T., Tan, X., Xiang, P., Jiang, L., Kang, Z., & Tan, P. (2016). High-performance asymmetric supercapacitors based on cobalt chloride carbonate hydroxide nanowire arrays and activated carbon. Electrochimica Acta, 198, 1–9. https://doi.org/10.1016/j.electacta.2016.01.194
Wu, R. Z., Sun, J. L., Xu, C. J., & Chen, H. Y. (2021). MgCo2O4-based electrode materials for electrochemical energy storage and conversion: a comprehensive review. Sustainable Energy & Fuels, 5(19), 4807–4829. doi:10.1039/d1se00909e
Xu, J. M., Yan, A. L., Wang, X. C., Wang, B. Q., & Cheng, J. P. (2021). A review of cobalt monoxide and its composites for supercapacitors. Ceramics International, 47(16), 22229–22239. https://doi.org/10.1016/j.ceramint.2021.04.262
Yu, T. T., Li, S. B., Li, F. B., Zhang, L., Wang, Y. P., & Sun, J. Y. (2024). In-situ synthesized and induced vertical growth of cobalt vanadium layered double hydroxide on few-layered V2CTx MXene for high energy density supercapacitors. Journal of Colloid and Interface Science, 661, 460–471. https://doi.org/10.1016/j.jcis.2024.01.206
Yun, T. H., Kim, T., Hwang, Y., Velhal, N. B., Park, H. W., Yim, C., & Kim, J. (2024). Laser-Assisted Rapid Fabrication of Cobalt Hydroxide@Carbon Fiber Composites for High-Performance, Robust Structural Supercapacitors. ACS Applied Energy Materials, 7(21), 10120–10133. https://doi.org/10.1021/acsaem.4c02261
Zhang, Y., Xue, S. C., Yan, X. H., Gao, H. L., & Gao, K. Z. (2023). Preparation and electrochemical properties of cobalt aluminum layered double hydroxide/carbon-based integrated composite electrode materials for supercapacitors. Electrochimica Acta, 442, 141822. https://doi.org/10.1016/j.electacta.2023.141822
Copyright (c) 2025 Journal of Engineering and Technological Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.