Investigation of Reaction Dynamics of Methane Reforming on Nickel Clusters Using Molecular Dynamics Simulations

Downloads
This study employed molecular dynamics simulations utilizing the ReaxFF force field to elucidate the mechanisms underlying methane decomposition and hydrogen generation on nickel clusters (Ni37, Ni55, and Ni80). The transformation of methane into valuable products, including carbon species and hydrogen molecules, is of considerable significance owing to the abundance of methane and its potential role as an atmospheric pollutant. The findings suggest that Ni37 clusters had the highest initial reactivity, although they deactivated swiftly; conversely, Ni55 and Ni80 exhibited more consistent reaction rates. The highest efficiency of hydrogen production per unit surface area was displayed by Ni55 clusters within 100,000 fs, demonstrating a balance between reactivity and stability. Methane dissociation on the Ni55 clusters occurred in multiple stages. Two distinct mechanisms for hydrogen formation were identified: simultaneous dissociation from methane and migration and the combination of hydrogen atoms on the cluster surface. Ni55 showed a substantially lower activation energy for methane dissociation at 0.5 eV than bulk nickel, suggesting a higher degree of reactivity. Conversely, the activation energy for hydrogen formation was 1.1 eV. These results highlight the potential of the Ni55 clusters as effective catalysts for hydrogen production and methane conversion
Abild-Pedersen, F., Lytken, O., Engbæk, J., Nielsen, G., Chorkendorff, I., & Nørskov, J. K. (2005). Methane activation on Ni(111): Effects of poisons and step defects. Surface Science, 590(2), 127–137. https://doi.org/10.1016/j.susc.2005.05.057
Aljaradin, M. (2012). Environmental Impact of Municipal Solid Waste Landfills in Semi-Arid Climates—Case Study – Jordan. The Open Waste Management Journal, 5(1), 28–39. https://doi.org/10.2174/1876400201205010028
Arifin, R., Zulkarnain, Abdurrouf, Winardi, Y., Riyanto, D., & Darminto (2024). Enhanced Production of Hydrogen via Catalytic Methane Decomposition on a Pt7-Ni (110) Substrate: A Reactive Molecular Dynamics Investigation. Clean Energy, 8(2), 168–176. https://doi.org/10.1093/ce/zkae017
Arifin, R., & Darminto, D. (2023). CH4dehydrogenation and H2formation on a Pt(100) Surface: An Insight From the Reactive Molecular Dynamics Simulations. New Journal of Chemistry, 47(24), 11444–11449. https://doi.org/10.1039/d3nj00693j
Arifin, R., Shibuta, Y., Shimamura, K., & Shimojo, F. (2015). First Principles Calculation of CH4 Decomposition on Nickel (111) Surface. The European Physical Journal B, 88(11). https://doi.org/10.1140/epjb/e2015-60557-7
Arifin, R., Winardi, Y., Zulkarnain, Abdurrouf, Darminto, Johari, N., & Selamat, A. (2025). Reactive Molecular Simulations of Catalytic Methane Decomposition on Ni (1 1 0) Surface. Chemical Engineering & Technology, 48(1), e202300445. https://doi.org/10.1002/ceat.202300445
Bebelis, S., Zeritis, A., Tiropani, C., & Neophytides, S. G. (2000). Intrinsic Kinetics of the Internal Steam Reforming of CH4over a Ni−YSZ−Cermet Catalyst−Electrode. Industrial & Engineering Chemistry Research, 39(12), 4920–4927. https://doi.org/10.1021/ie000350u
Casey, J. A., Cushing, L., Depsky, N., & Morello‐Frosch, R. (2021). Climate Justice and California’s Methane Superemitters: Environmental Equity Assessment of Community Proximity and Exposure Intensity. Environmental Science & Technology, 55(21), 14746–14757. https://doi.org/10.1021/acs.est.1c04328
Chen, Q., & Lua, A. C. (2020). Synthesis of Electroless Ni Catalyst Supported On SBA ‐15 for Hydrogen and Carbon Production by Catalytic Decomposition of Methane. International Journal of Energy Research, 45(2), 2810–2823. https://doi.org/10.1002/er.5975
Chenoweth, K., van Duin, A. C. T., & Goddard, W. A. (2008). ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation. The Journal of Physical Chemistry A, 112(5), 1040–1053. https://doi.org/10.1021/jp709896w
Dipu, A. L. (2021). Methane Decomposition Into Co x ‐free Hydrogen Over a Ni‐based Catalyst: An Overview. International Journal of Energy Research, 45(7), 9858–9877. https://doi.org/10.1002/er.6541
Doye, J. P. K. , & J. Wales, D. (1998). Global minima for transition metal clusters described by Sutton–Chen potentials. New Journal of Chemistry, 22(7), 733–744. https://doi.org/10.1039/A709249K
Fujimoto, Y., & Ohba, T. (2022). Size-Dependent Catalytic Hydrogen Productionviamethane Decomposition and Aromatization at a Low-Temperature Using Co, Ni, Cu, Mo, and Ru Nanometals. Physical Chemistry Chemical Physics, 24(47), 28794–28803. https://doi.org/10.1039/d2cp03713k
Gallego-Villada, L. A., Perez-Sena, W. Y., Sánchez-Velandia, J. E., Cueto, J., del Mar Alonso-Doncel, M., Wärmå, J., Mäki-Arvela, P., Alarcón, E. A., Serrano, D. P., & Murzin, D. Yu. (2024). Synthesis of dihydrocarvone over dendritic ZSM-5 Zeolite: A comprehensive study of experimental, kinetics, and computational insights. Chemical Engineering Journal, 498, 155377. https://doi.org/10.1016/j.cej.2024.155377
Gamal, A., Eid, K., Kumar, D., & Kumar, A. (2021). Catalytic Methane Decomposition to Carbon Nanostructures and COx-Free Hydrogen: A Mini-Review. Nanomaterials, 11(5), 1226. https://doi.org/10.3390/nano11051226
Harbin, H., Unruh, D. K., Casadonte, D. J., & Khatib, S. J. (2023). Sonochemically Prepared Ni-Based Perovskites as Active and Stable Catalysts for Production of COx-Free Hydrogen and Structured Carbon. ACS Catalysis, 13(7), 4205–4220. https://doi.org/10.1021/acscatal.2c05672
Harrath, K., Yao, Z., Jiang, Y., Wang, Y., & Li, J. (2023). Activity Origin of the Nickel Cluster on TiC Support for Nonoxidative Methane Conversion. The Journal of Physical Chemistry Letters, 14(17), 4033–4041. https://doi.org/10.1021/acs.jpclett.3c00375
Hasnan, N. S. N., Pudukudy, M., Yaakob, Z., Kamarudin, N. H. N., Lim, K. L., & Timmiati, S. N. (2023). Promoting Effects of Copper and Iron on Ni/MSN Catalysts for Methane Decomposition. Catalysts, 13(7), 1067. https://doi.org/10.3390/catal13071067
Hasnan, N. S. N., Timmiati, S. N., Lim, K. L., Yaakob, Z., Kamaruddin, N. H. N., & Teh, L. P. (2020). Recent Developments in Methane Decomposition Over Heterogeneous Catalysts: An Overview. Materials for Renewable and Sustainable Energy, 9(2). https://doi.org/10.1007/s40243-020-00167-5
Iskandarov, A., & Tada, T. (2017). First-Principles Study of Dopant Effect on Hydrogen Oxidation in Anode of Solid Oxide Fuel Cell. ECS Transactions, 78(1), 1469–1475. https://doi.org/10.1149/07801.1469ecst
Kikuchi, R. (2002). Views on Methane Hydrate for Zero-Emission Energy. Energy & Environment, 13(1), 105–113. https://doi.org/10.1260/0958305021501100
Li, J., Croiset, E., & Ricardez‐Sandoval, L. A. (2013). Effect of Metal–Support Interface During CH4and H2Dissociation on Ni/Γ-Al2O3: A Density Functional Theory Study. The Journal of Physical Chemistry C, 117(33), 16907–16920. https://doi.org/10.1021/jp402421q
Li, K., Yin, C., Zheng, Y., He, F., Wang, Y., Jiao, M., & Tang, H. (2016). DFT Study on the Methane Synthesis From Syngas on a Cerium-Doped Ni(111) Surface. The Journal of Physical Chemistry C, 120(40), 23030–23043. https://doi.org/10.1021/acs.jpcc.6b07400
Liang, W., Chen, C., Dong, L., Tan, K., Feng, X., Liu, Y., Chen, X., Yang, C., & Shan, H. (2020). Revealing the Effect of Nickel Particle Size on Carbon Formation Type in the Methane Decomposition Reaction. Catalysts, 10(8), 890. https://doi.org/10.3390/catal10080890
Liu, Z., Grinter, D. C., Lustemberg, P. G., Nguyen‐Phan, T., Zhou, Y., Luo, S., Waluyo, I., Crumlin, E. J., Stacchiola, D., Zhou, J., Carrasco, J., Busnengo, H. F., Ganduglia‐Pirovano, M. V., Senanayake, S. D., & Rodríguez, J. A. (2016). Dry Reforming of Methane on a Highly‐Active Ni‐CeO2 Catalyst: Effects of Metal‐Support Interactions on C−H Bond Breaking. Angewandte Chemie, 55(26), 7455–7459. https://doi.org/10.1002/anie.201602489
Lu, X. (2021). Study on Comprehensive Utilization Technology of Low Concentration Coal Bed Methane. E3s Web of Conferences, 290, 03010. https://doi.org/10.1051/e3sconf/202129003010
Mueller, J. E., van Duin, A. C. T., & Goddard, W. A. I. (2010). Development and Validation of ReaxFF Reactive Force Field for Hydrocarbon Chemistry Catalyzed by Nickel. The Journal of Physical Chemistry C, 114(11), 4939–4949. https://doi.org/10.1021/jp9035056
Niu, J., Zhang, C., Liu, H., Jin, Y., Zhang, R., & Ran, J. (2023). Unraveling the effects of Ni particle size and facet on CH4 activation: From cluster to nanoparticle. International Journal of Hydrogen Energy, 48(51), 19486–19493. https://doi.org/10.1016/j.ijhydene.2023.02.044
Phichairatanaphong, O., Teepakakorn, P., Poo‐arporn, Y., Chareonpanich, M., & Donphai, W. (2021). Infiltrate Mesoporous Silica-Aluminosilicate Structure Improves Hydrogen Production via Methane Decomposition Over a Nickel-Based Catalyst. Industrial & Engineering Chemistry Research, 60(12), 4562–4574. https://doi.org/10.1021/acs.iecr.0c06355
Rad, L. F., Amini, M. R., Ahmadi, A., & Hoseinzadeh, S. (2022). Environmental and Economic Assessments of Hydrogen Utilization in the Transportation Sector of Iran. Chemical Engineering & Technology, 46(3), 435–446. https://doi.org/10.1002/ceat.202100500
Rao, C. N. R., Vijayakrishnan, V., Aiyer, H. N., Kulkarni, G. U., & Subbanna, G. N. (1993). An Investigation of Well-Characterized Small Gold Clusters by Photoelectron Spectroscopy, Tunneling Spectroscopy, and Cognate Techniques. The Journal of Physical Chemistry, 97(43), 11157–11160. https://doi.org/10.1021/j100145a006
Roshchanka, V., & Evans, M. (2014). Incentives for Methane Mitigation and Energy‐efficiency Improvements in the Case of Ukraine’s Natural Gas Transmission System. Earth S Future, 2(6), 321–330. https://doi.org/10.1002/2013ef000204
Sanchez‐Bastardo, N., Schlögl, R., & Ruland, H. (2021). Methane Pyrolysis for Zero-Emission Hydrogen Production: A Potential Bridge Technology From Fossil Fuels to a Renewable and Sustainable Hydrogen Economy. Industrial & Engineering Chemistry Research, 60(32), 11855–11881. https://doi.org/10.1021/acs.iecr.1c01679
Santos, J. M. d., Gomes, J. G., Antônio Carlos Daltro de Freitas, & Guiradello, R. (2022). An Analysis of the Methane Cracking Process for CO2-Free Hydrogen Production Using Thermodynamic Methodologies. Methane, 1(4), 243–261. https://doi.org/10.3390/methane1040020
Shelepova, E. V., Maksimova, T. A., Bauman, Y. I., Mishakov, I. V., & Vedyagin, A. A. (2022). Experimental and Simulation Study on Coproduction of Hydrogen and Carbon Nanomaterials by Catalytic Decomposition of Methane-Hydrogen Mixtures. Hydrogen, 3(4), 450–462. https://doi.org/10.3390/hydrogen3040028
Shen, X., Zhang, Z., & Zhang, D. H. (2016). Eight-Dimensional Quantum Dynamics Study of CH4 and CD4 Dissociation on Ni(100) Surface. The Journal of Physical Chemistry C, 120(36), 20199–20205. https://doi.org/10.1021/acs.jpcc.6b07265
Strizhenok, A. V., & Korelskiy, D. S. (2019). Estimation and Reduction of Methane Emissions at the Scheduled and Repair Outages of Gas-Compressor Units. Journal of Ecological Engineering, 20(1), 46–51. https://doi.org/10.12911/22998993/93943
Stukowski, A. (2009). Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 18(1), 015012. https://doi.org/10.1088/0965-0393/18/1/015012
Sun, Z. (2024). Reinforcing Hydrogen and Carbon Nanotube Coproduction via Cr–O–Ni Catalyzed Methane Decomposition. Journal of Materials Chemistry A, 12(8), 4893–4902. https://doi.org/10.1039/d3ta06921d
van Duin, A. C. T., Dasgupta, S., Lorant, F., & Goddard, W. A. (2001). ReaxFF: A Reactive Force Field for Hydrocarbons. The Journal of Physical Chemistry A, 105(41), 9396–9409. https://doi.org/10.1021/jp004368u
van Duin, A. C. T., W.A. Goddard, M.M. Islam, van Schoot, H., T. Trnka, & A.L. Yakovlev. (n.d.). ReaxFF 2024.1 (Version 2024.1) [Computer software]. SCM. http://www.scm.com
Vlaskin, M. S. (2023). Thermal Decomposition of Methane in Capillary Tubes of Different Materials: Corundum, Titanium, Nickel, and Stainless Steel. Applied Sciences, 13(23), 12663. https://doi.org/10.3390/app132312663
Wang, H. Y., & Lua, A. C. (2012). Development of Metallic Nickel Nanoparticle Catalyst for the Decomposition of Methane Into Hydrogen and Carbon Nanofibers. The Journal of Physical Chemistry C, 116(51), 26765–26775. https://doi.org/10.1021/jp306519t
Wang, P., Wang, S., Lin, R.-B., Mou, X., & Ding, Y. (2021). Pre-Coking Strategy Strengthening Stability Performance of Supported Nickel Catalysts in Chloronitrobenzene Hydrogenation. Catalysts, 11(10), 1156. https://doi.org/10.3390/catal11101156
Yan, Q., Ketelboeter, T., & Cai, Z. (2022). Production of COx-Free Hydrogen and Few-Layer Graphene Nanoplatelets by Catalytic Decomposition of Methane Over Ni-Lignin-Derived Nanoparticles. Molecules, 27(2), 503. https://doi.org/10.3390/molecules27020503
Zeng, J., Tarazkar, M., Palmer, C., Gordon, M. J., Metiu, H., & McFarland, E. W. (2021). Initial Steps in CH4 Pyrolysis on Cu and Ni. The Journal of Physical Chemistry C, 125(34), 18665–18672. https://doi.org/10.1021/acs.jpcc.1c03606
Zhang, P., Yang, Y., Duan, X., Liu, Y., & Wang, S. (2021). Density Functional Theory Calculations for Insight into the Heterocatalyst Reactivity and Mechanism in Persulfate-Based Advanced Oxidation Reactions. ACS Catalysis, 11(17), 11129–11159. https://doi.org/10.1021/acscatal.1c03099
Copyright (c) 2025 Journal of Engineering and Technological Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.