Geometrically Complex, Relatively Weak, and Subcritically Stressed Lembang Fault May Lead to a Magnitude 7.0 Earthquake

Downloads
The Lembang Fault is one of the major faults in the province of West Java, approximately 10 km north of its capital, Bandung, a city inhabited by more than 2 million people. The fault exhibits distinct geometrical characteristics in its 29 km length, transitioning from normal, strike-slip, to vertical faulting mechanisms. Two studies have evidence of a normal fault with a dip direction to the north and a thrust fault with a dip direction to the south. Despite the lack of significant recorded earthquakes, the Lembang Fault is active and poses a high seismic hazard to the surrounding region. Previous deformation studies estimate that the fault could produce earthquakes of magnitude 6.7 to 7.0, though these estimates do not account for the fault's unique geometry, which includes bends at both its eastern and western ends. This geometrical complexity can significantly affect slip distribution, potentially leading to over- or underestimating earthquake magnitude. In this study, we assess the earthquake potential of the Lembang Fault using 3D dynamic rupture simulations that incorporate the fault's geometrical complexity, 3D velocity structure, and plastic deformation. Our simulations indicate that the fault's complex geometry enhances rupture slip to the east while halting it to the west, resulting in rupture along 80% of the fault's total length. However, according to our model, a self-sustained runaway rupture scenario occurs only if the fault is characterized by relatively weak apparent strength, subcritical stress, and overpressurization. This worst-case scenario could result in a magnitude 7.0 earthquake, posing a significant threat to the densely populated nearby city. Therefore, our findings have crucial implications for seismic hazard assessment around the Lembang Fault.
Abrahamson, N. A., Silva, W. J., & Kamai, R. (2014). Summary of the ASK14 ground motion relation for active crustal regions. Earthquake Spectra, 30(3), 1025–1055. https://doi.org/10.1193/070913eqs198m
Afnimar, Yulianto, E., & Rasmid. (2015). Geological and tectonic implications obtained from first seismic activity investigation around Lembang fault. Geoscience Letters, 2(1). https://doi.org/10.1186/s40562-015-0020-5
Ahrens, J., Geveci, B., & Law, C. (2005). Paraview: An end‐user tool for large data visualization. In The Visualization Handbook (Vol. 717).
Baker, J., Bradley, B., & Stafford, P. (2021). Seismic Hazard and Risk Analysis. Cambridge University Press.
Bird, P. (2003). An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, 4(3). https://doi.org/10.1029/2001GC000252
Boore, D. M., Stewart, J. P., Seyhan, E., & Atkinson, G. M. (2014). NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes. Earthquake Spectra, 30(3), 1057–1085. https://doi.org/10.1193/070113EQS184M
Brocher, T. M. (2005). Empirical Relations between Elastic Wavespeeds and Density in the Earth’s Crust. Bulletin of the Seismological Society of America, 95(6), 2081–2092. https://doi.org/10.1785/0120050077
Byerlee, J. (1978). Friction of rocks. Pure and Applied Geophysics PAGEOPH, 116(4–5), 615–626. https://doi.org/10.1007/BF00876528/METRICS
Campbell, K. W., & Bozorgnia, Y. (2014). NGA-West2 Ground Motion Model for the Average Horizontal Components of PGA, PGV, and 5% Damped Linear Acceleration Response Spectra. Earthquake Spectra, 30(3), 1087–1115.
Cocco, M., Aretusini, S., Cornelio, C., Nielsen, S. B., Spagnuolo, E., Tinti, E., & Di Toro, G. (2023). Fracture Energy and Breakdown Work During Earthquakes. Annual Review of Earth and Planetary Sciences, 51, 217–252. https://doi.org/10.1146/ANNUREV-EARTH-071822-100304/1
Daryono, M. R., Natawidjaja, D. H., Sapiie, B., & Cummins, P. (2019). Earthquake Geology of the Lembang Fault, West Java, Indonesia. Tectonophysics, 751(December 2018), 180–191. https://doi.org/10.1016/j.tecto.2018.12.014
Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., & Shimamoto, T. (2011). Fault lubrication during earthquakes. Nature, 471(7339), 494–499. https://doi.org/10.1038/nature09838
Gabriel, A. A., Garagash, D. I., Palgunadi, K. H., & Mai, P. M. (2024). Fault size-dependent fracture energy explains multiscale seismicity and cascading earthquakes. Science (New York, N.Y.), 385(6707), eadj9587. https://doi.org/10.1126/SCIENCE.ADJ9587/SUPPL_FILE/SCIENCE.ADJ9587_MOVIES_S1_TO_S14.ZIP
Harris, R. A., & Day, S. M. (1993). Dynamics of fault interaction: parallel strike-slip faults. Journal of Geophysical Research: Solid Earth, 98(B3), 4461–4472. https://doi.org/10.1029/92JB02272
Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., & Smoczyk, G. M. (2018). Slab2, a comprehensive subduction zone geometry model. Science, 362(6410), 58–61. https://doi.org/10.1126/SCIENCE.AAT4723/SUPPL_FILE/AAT4723-HAYES-SM.PDF
Heidbach, O., Rajabi, M., Cui, X., Fuchs, K., Müller, B., Reinecker, J., Reiter, K., Tingay, M., Wenzel, F., Xie, F., Ziegler, M. O., Zoback, M. Lou, & Zoback, M. (2018). The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics, 744, 484–498. https://doi.org/10.1016/j.tecto.2018.07.007
Hidayat, E., Brahmantyo, B., & Yulianto, E. (2008). Sagpond Sediment Analysis on the Lembang Fault. Geoaplika, 3(3), 151–161. (Text in Indonesian)
Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90–95.
Hussain, E., Gunawan, E., Hanifa, N. R., & Zahro, Q. (2023). The seismic hazard from the Lembang Fault, Indonesia, derived from InSAR and GNSS data. Natural Hazards and Earth System Sciences, 23(10), 3185–3197. https://doi.org/10.5194/NHESS-23-3185-2023
Idrissa, I. M. (2014). An NGA-West2 empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes. Earthquake Spectra, 30(3), 1155–1177. https://doi.org/10.1193/070613EQS195M
Julian, B. R., Miller, D., & Foulger, G. R. (1998). NON-DOUBLE-COUPLE EARTHQUAKES. 98, 525–549.
Koulali, A., McClusky, S., Susilo, S., Leonard, Y., Cummins, P., Tregoning, P., Meilano, I., Efendi, J., & Wijanarto, A. B. (2017). The kinematics of crustal deformation in Java from GPS observations: Implications for fault slip partitioning. Earth and Planetary Science Letters, 458, 69–79. https://doi.org/10.1016/j.epsl.2016.10.039
Lehujeur, M., Chevrot, S., Villaseñor, A., Masini, E., Saspiturry, N., Lescoutre, R., & Sylvander, M. (2021). Three-dimensional shear velocity structure of the Mauléon and Arzacq Basins (Western Pyrenees). BSGF - Earth Sciences Bulletin, 192(1), 47. https://doi.org/10.1051/bsgf/2021039
Li, B., Gabriel, A.-A., Ulrich, T., Abril, C., & Halldorsson, B. (2023). Dynamic Rupture Models, Fault Interaction and Ground Motion Simulations for the Segmented Húsavík-Flatey Fault Zone, Northern Iceland. Journal of Geophysical Research: Solid Earth, 128(6), e2022JB025886. https://doi.org/10.1029/2022JB025886
Lu, X., Lapusta, N., & Rosakis, A. J. (2007). Pulse-like and crack-like ruptures in experiments mimicking crustal earthquakes. Proceedings of the National Academy of Sciences of the United States of America, 104(48), 18931–18936. https://doi.org/10.1073/pnas.0704268104
Martin, S., Cummins, P. R., & Meltzner, A. J. (2022). Gempa Nusantara : A Database of 7380 Macroseismic Observations for 1200 Historical Earthquakes in Indonesia from 1546 to 1950. https://doi.org/10.1785/0120220047
Meilano, I., Abidin, H. Z., Andreas, H., Gumilar, I., Sarsito, D., Rahma, H., Rino, Harjono, H., Kato, T., Kimata, F., & Fukuda, Y. (2012). Slip rate estimation of the lembang fault west java from geodetic observation. Journal of Disaster Research, 7(1), 12–18. https://doi.org/10.20965/jdr.2012.p0012
National Bathymetric System – Geospatial Information Agency (BIG). (2024). https://sibatnas.big.go.id/ (15 November 2024)
National Earthquake Study Center (PUSGEN). (2017). Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017 (Map of Indonesia
Earthquake Sources and Hazards in 2017). The Ministry of Public Works and Housing, 1689–1699. https://itb.ac.id/focus/read/432/home/peta-sumber-dan-bahaya-gempa-indonesia-tahun-2017
Nurhasan, Naufal, M. R., Srigutomo, W., Mustopa, E. J., Diba, D., Ogawa, Y., Nada, Q., Pratama, A., & Rusdiana, R. (2024). Resistivity Distribution of Lembang Fault Based on Magnetotelluric Data. Journal of Physics: Conference Series, 2734(1). https://doi.org/10.1088/1742-6596/2734/1/012014
Palgunadi, K. H., Gabriel, A. A., Garagash, D. I., Ulrich, T., & Mai, P. M. (2024b). Rupture Dynamics of Cascading Earthquakes in a Multiscale Fracture Network. Journal of Geophysical Research: Solid Earth, 129(3), e2023JB027578. https://doi.org/10.1029/2023JB027578
Palgunadi, K. H., Gabriel, A. A., Ulrich, T., López-Comino, J. Á., & Mai, P. M. (2020). Dynamic fault interaction during a fluid-injection-induced earthquake: The 2017 mw 5.5 pohang event. Bulletin of the Seismological Society of America, 110(5), 2328–2349. https://doi.org/10.1785/0120200106
Pelties, C., Gabriel, A. A., & Ampuero, J. P. (2014). Verification of an ADER-DG method for complex dynamic rupture problems. Geoscientific Model Development, 7(3), 847–866. https://doi.org/10.5194/gmd-7-847-2014
Pranata, B., Yudistira, T., Widiyantoro, S., Brahmantyo, B., Cummins, P. R., Saygin, E., Zulfakriza, Z., Rosalia, S., & Cipta, A. (2020). Shear wave velocity structure beneath Bandung basin, West Java, Indonesia from ambient noise tomography. Geophysical Journal International, 220(2), 1045–1054. https://doi.org/10.1093/gji/ggz493
Ry, R. V., Cummins, P. R., Hejrani, B., & Widiyantoro, S. (2023). 3-D shallow shear velocity structure of the Jakarta Basin from transdimensional ambient noise tomography. Geophysical Journal International, 234(3), 1916–1932. https://doi.org/10.1093/gji/ggad176
Savage, J. C. (1965). The stopping phase on seismograms. Bulletin of the Seismological Society of America, 55(1), 47–58.
Scholz, C. H. (2018). The Mechanics of Earthquakes and Faulting. The Mechanics of Earthquakes and Faulting, 3rd Edition, 1–519. https://doi.org/10.1017/9781316681473
Simpson, R. W. (1997). Quantifying Anderson's fault types. Journal of Geophysical Research: Solid Earth, 102(B8), 17909-17919.
Supendi, P., Nugraha, A. D., Puspito, N. T., Widiyantoro, S., & Daryono, D. (2018). Identification of active faults in West Java, Indonesia, based on earthquake hypocenter determination, relocation, and focal mechanism analysis. Geoscience Letters, 5(1),31. https://doi.org/10.1186/s40562-018-0130-y
Udias, A., Madariaga, R., & Buforn, E. (2013). Source mechanisms of earthquakes: Theory and practice. In Source Mechanisms of Earthquakes: Theory and Practice. Cambridge University Press. https://doi.org/10.1017/CBO9781139628792
Ulrich, T., Gabriel, A. A., Ampuero, J. P., & Xu, W. (2019). Dynamic viability of the 2016 Mw 7.8 Kaikōura earthquake cascade on weak crustal faults. Nature Communications, 10(1), 1–16. https://doi.org/10.1038/s41467-019-09125-w
Uphoff, C., Rettenberger, S., Bader, M., Madden, E. H., Ulrich, T., Wollherr, S., & Gabriel, A. A. (2017). Extreme Scale Multi-Physics Simulations of the Tsunamigenic 2004 Sumatra Megathrust Earthquake. International Conference for High Performance Computing, Networking, Storage and Analysis, SC, 2017-Novem. https://doi.org/10.1145/3126908.3126948
Van-Bemmelen, R. (1949). The Geology of Indonesia, Vol 1A, General Geology of Indonesia and Adjacent Archipelagoes. Government Printing Office, The Hague, Martinus Nijhoff, Sole Agent.
Wang, S. R., He, S. N., Li, C. Y., Yan, W. F., & Zou, Z. S. (2017). Near-fault mining induced microseismic distribution characteristics and its influencing factors. Tehnički Vjesnik, 24(2), 535–542. https://doi.org/10.17559/TV-20170226113147
Widiyantoro, S., Gunawan, E., Muhari, A., Rawlinson, N., Mori, J., Hanifa, N. R., Susilo, S., Supendi, P., Shiddiqi, H. A., Nugraha, A. D., & Putra, H. E. (2020). Implications for megathrust earthquakes and tsunamis from seismic gaps south of Java Indonesia. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-72142-z
Wollherr, S., Gabriel, A. A., & Uphoff, C. (2018). Off-fault plasticity in three-dimensional dynamic rupture simulations using a modal Discontinuous Galerkin method on unstructured meshes: Implementation, verification and application. Geophysical Journal International, 214(3), 1556–1584. https://doi.org/10.1093/GJI/GGY213
Copyright (c) 2025 Journal of Engineering and Technological Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.