Development of Solar-Powered Automatic Pest Trap for Rice Cultivation Plants in Indonesia

Downloads
Rice is the main commodity processed into rice, as a staple food for the people of Indonesia. Pests and diseases can cause decreased production to crop failure. The method used by farmers is pest control by spraying chemical pesticides. However, chemical pesticides have serious impacts on plants, increased immunity for pests, increased chemical residues in crops that threaten human health, and environmental pollution. The objective of this study is to design an integrated high-tech trap that is effective, efficient, cost-effective, durable, safe, environmentally friendly (zero-emission), and low in operational costs, with the ultimate goal of enhancing farmers' income. This automatic pest trap embeds a microcontroller, infrared sensor, fan and solar panel. Observations were made on 4 tools, namely complete lures, yellow LED, lights and pheromones. Based on the observations, Scotinophara coarctata and Nilaparvata lugens were identified as the most commonly trapped insect pests in rice fields. The insect's fall speed was fast, namely 1 minute 4 seconds with good stability. Insect readings came in higher on the complete lure due to the combination of three lures, each of which has its own insect attraction. The effectiveness of insect capture on the complete automatic insect trap was the highest at 84.47%.
Anwar, R., Sartiami, D., & Rauf, A. (2024). Species Investigation of Rice Stem Borers and Its Parasitoids on Fallowing Rice Fields at Karawang, Indonesia. AGRIVITA Journal of Agricultural Science, 46(1), 38-47. https://doi.org/10.17503/agrivita.v46i1.4036
Bruno, T.J. & Svoronos, P.D.N. (2005). CRC Handbook of Fundamental Spectroscopic Correlation Charts. CRC Press, Boca Raton. https://doi.org/10.1201/9780849332500
Dwicahyo, K., Hariyanto, & Prakoso, B. (2017). Wireless Telemetry of Temperature, Humidity, and Air Pressure Data in Real Time Based on ATMEGA328P Microcontroller. Jurnal Meteorologi Klimatologi dan Geofisika, 4(1), 44–51. (Text in Indonesian)
Esker, P.D., Obrycki, J., & Nutter, F.W. (2004). Trap Height and Orientation of Yellow Sticky Traps Affect Capture of Chaetocnema Pulicaria (Coleoptera: Chrysomelidae). In Journal of Economic Entomology, 97(1), 145–149. https://doi.org/10.1603/0022-0493-97.1.145
Gaglio, G., Napoli, E., Falsone, L., Giannetto, S., & Brianti, E. (2017). Field Evaluation of a New Light Trap for Phlebotomine Sand Flies. Acta Tropica, 174, 114–117. https://doi.org/10.1016/j.actatropica.2017.07.011
Gao, Y., Li, G., Li, K., Lei, C., & Huang, Q. (2017). Comparison of The Trapping Effect and Antioxidant Enzymatic Activities Using Three Different Light Sources in Cockchafers. Environ. Sci. Pollut. Res., 24(36), 27855–27861. https://doi.org/10.1007/s11356-017-0388-1
González, M., Alarcón-Elbal, P. M., Valle-Mora, J., & Goldarazena, A. (2016). Comparison of Different Light Sources for Trapping Culicoides Biting Midges, Mosquitoes and Other Dipterans. Veterinary Parasitology, 226, 44–49. https://doi.org/10.1016/j.vetpar.2016.06.020
Hani, S., & Santoso, G. (2018). Insect Killer Uses Solar Cell Energy to Increase Rice Crop Productivity. Simposium Nasional ke 17 RAPI 2018 FT UMS, 31 – 36. (Text in Indonesian)
Ilham, H.A., Syahta, R., Anggara F. & Jamaluddin, J. (2018). Rice Pest Trap Using Solar Light. Journal of Applied Agricultural Science and Technology, 2(1), 11 – 19. https://doi.org/10.32530/jaast.v2i1.13 (Text in Indonesian)
Irawan, A. I., Patmasari, R., & Hidayat, M. R. (2020). DS18B20 Sensor Performance Improvement in IoT Monitoring Systems Engineering Technology. Jurnal Teknologi Rekayasa, 5(1), 101-109. http://dx.doi.org/10.31544/jtera.v5.i1.2019.101-110 (Text in Indonesian)
Kim, K. N., Huang, Q. Y., & Lei, C. L. (2019). Advances In Insect Phototaxis and Application to Pest Management: A Review. Pest Manag. Sci., 75(12), 3135–3143. https://doi.org/10.1002/ps.5536
Leena, G., Anandhi, P., Ambethgar, V., Elamathi, S., Subrahmaniyan, K., Ganapati, P. S., & Venugopal, S. (2024). Rice Black Bug (Scotinophora sp.) Status and Ecological Pest Management Practices in Rice. Journal of Plant Diseases and Protection, 131(6), 1819-1836. https://doi.org/10.1007/s41348-024-00976-0
Leksono, A.S., Yanuwiadi, B., Khotimah, A., & Zairina, A. (2022). Grasshopper Diversity in Several Agricultural Areas and Savannas in Dompu, Sumbawa Island, Indonesia. Biodiversitas, 23(1), 75-80. https://doi.org/10.13057/biodiv/d230110
Lengkong, M., Wanta, N. N. & Paruntu, M. H. B. (2024). Diversity of Insect Types on Rice (Oryza Sativa L.) Crops in Minahasa District. Budapest International Research in Exact Sciences, 6(2), 72-80. https://doi.org/10.33258/birex.v6i2.7860
Litsinger, J. A., Barrion, A. T., Canapi, B. L., Lumaban, M. D., Pantua, P. C. & Aquino, G. B. (2013). The Rice Whorl
Maggot, Hydrellia Philippina Ferino (Diptera: Ephydridae) in the Philippines: A Review. Philipp Ent., 27(1), 1–57. https://doi.org/10.59852/TPE-A613V27I1
Mainali, B.P., & Lim, U.T. (2010). Circular Yellow Sticky Trap with Black Background Enhances Attraction of Frankliniella Occidentalis (Pergande) (Thysanoptera: Thripidae). Applied Entomology and Zoology, 45 (1), 207-213. https://doi.org/10.1303/aez.2010.207
Morshed, M. N., Mamun, M. D. A., Nihad, S. A. I., Rahman, M. M., Sultana, N., & Rahman, M.M. (2023). Effect of Weather Variables on Seasonal Abundance of Rice Insects in Southeast Coastal Region of Bangladesh. Journal of Agriculture and Food Research, 11(100513), 1-11. https://doi.org/10.1016/j.jafr.2023.100513
Mufidah, Z., Jordy, A. R., Fil’aini, R., Telaumbanua, M., & Fatikhunnada, A. (2023). Design of Environmental Conditions of Transportation Simulation Instruments on Tomato (Solanum Lycopersicum). Jurnal Keteknikan Pertanian Tropis dan Biosistem, 11(1), 92-104. https://doi.org/10.21776/ub.jkptb.2023.011.01.09
Nahar, N., Douma, J. C., Uddin, M. M., de Jong, P. W., Struik, P. C. & Stomph, T. (2024). Concerted Action Needed Among Smallholders When Using Mass Trapping of Insect Pests. Agriculture, Ecosystems and Environment, 368(109003), 1-7. https://doi.org/10.1016/j.agee.2024.109003
Omkar. (2018). Pests and Their Management. Springer Nature Singapore, Singapore. https://doi.org/10.1007/978-981-10-8687-8
Patel, G., Chauhan, S., Kumar, R., & Mourya, P.K. (2024). Management of Rice Caseworm (Nymphula depunctalis) in Rice in Eastern Region of Uttar Pradesh, India. Journal of Experimental Agriculture International, 46(8), 866-874. https://doi.org/10.9734/jeai/2024/v46i82772
Pinandita, S. (2014). Design and Construction of a Mechanical Planthopper Pest Control Device Using LEDs and a Suction Device. JNTETI, 03(4), 281 – 286. https://doi.org/10.22146/JNTETI.V3I4.116 (Text in Indonesian)
Ponijan, Handayani, E.P., Kurniawati, N., Rakhmawati & Zulkarnaen. (2023). Joint Application of B. bassiana and M. anisopliae Bioinsectisides for Controlling Rice Bugs and Improving Rice Yields. Journal of Tropical Plant Pests and Diseases, 23(2), 56-64. https://doi.org/10.23960/jhptt.22358-64
Pranata, M. (2016). Implementation of Infrared Sensors with Wireless Network for Chicken Coop Blower Monitoring System. JANAPATI, 9(3), 304-312. https://doi.org/10.23887/janapati.v9i3.24798 (Text in Indonesian)
Puspasari, F., Satya, T.P., Oktiawati, U. Y., Fahrurrozi, I. & Prisyanti, H. (2020). Accuracy Analysis of Arduino UNO-Based DHT22 Sensor System Against Standard Thermohygrometer. Jurnal Fisika dan Aplikasinya, 16(1), 40-45. http://dx.doi.org/10.12962%2Fj24604682.v16i1.5776 (Text in Indonesian)
Ranamukhaarachchi, S.L., & Wickramarachchi, K.S. (2007). Color Preference and Sticky Traps for Field Management of Thrips Ceratothripoides Claratris (Shumsher) (Thysanoptera:Thripdae) in Tomato in Central Thailand. Int. J. Agri. Biol., 9(6), 392–397.
Reddy, G. V. P., Balakrishnan, S., Remolona, J. E., Kikuchi, R. & Bamba, J. P. (2011). Influence Of Trap Type, Size, Color, and Trapping Location Rhabdoscelus On Obscurus Capture Of (Coleoptera: Curculionidae). Ann. Entomol. Soc. Am., 104(3), 594–603. https://doi.org/10.1603/AN10200
Reddy, V.D., Rao, P.N., Poduri, N., & Rao, K.V., (2010). Pests and Pathogens: Management Strategies. CRC Press, BS Publications, India.
Santi, I.S., Firmansyah, E., Febrian, B. M. & Listianto, H. (2023). The Effectiveness of Trap Colors Against the Catch of Rice Plant Pest. Tropical Plantation Journal, 2(1), 28-33. https://doi.org/10.56125/tpj.v2i1.17
Shimoda, M., & Honda, K. I. (2013). Insect Reactions to Light and Its Applications to Pest Management. Applied Entomology and Zoology, 48(4), 413–421. https://doi.org/10.1007/s13355-013-0219-x
Silva, F. S., da Silva, A. A., & Rebêlo, J. M. M. (2016). An Evaluation of Light-Emitting Diode (LED) Traps at Capturing Phlebotomine Sand Flies (Diptera: Psychodidae) in a Livestock Area in Brazil. Journal of Medical Entomology, 53(3), 634–638. https://doi.org/10.1093/jme/tjw016
Suckling, D.M., Stringer, L.D., Kean, J.M., Lo, P.L., Bell, V., Walker, J.T., Twdile, A.M., Perez A.J., & El-Sayed, A. (2015). Spatial Analysis of Mass Trapping: How Close Is Close Enough? Pest Manag. Sci., 71(10), 1452–1461. https://doi.org/10.1002/ps.3950
Telaumbanua, M., Azwar, F. R., Lanya, B., Haryanto, A. & Amien, E. R. (2022). Design of Automatic Pest Trap using A Yellow-LED bait on Cucumber Plants. IOP Conf. Series: Earth and Environmental Science, 1018 (012023), 1-8. https://doi.org/10.1088/1755-1315/1018/1/012023
Telaumbanua, M., Haryanto, A., Wisnu, F.K, Lanya, B. & Wiratama, W. (2021). Design of Insect Trap Automatic Control System for Cacao Plants. Procedia Environmental Science, Engineering and Management, 8 (1), 167-175.
Telaumbanua, M., Noval, F. A., Erika, Y., Haryanto, A., Lanya, B., Wisnu, F. K., Ansari, A., & Indriyawati, A. (2024). Design of Temperature-Soil Moisture Control and Monitoring System for Chili Cultivation in Greenhouse. IOP Conf. Series: Earth and Environmental Science, 1386(012029), 1-14. https://doi.org/10.1088/1755-1315/1386/1/012029
Telaumbanua, M., Savitri, E. A., Shofi, A.B., Suharyatun, S., Wisnu F.K. & Haryanto, A. (2021). Plant-Based Pesticide Using Citronella (Cymbopogon nardus L.) Extract to Control Insect Pests on Rice Plants. IOP Conf. Series: Earth and Environmental Science, 739(012071), 1-12. https://doi.org/10.1088/1755-1315/739/1/012071
Tewari, S., Leskey, T.C., Nielsen, A.L., Pinero, J.C., & Rodriguez-Saona, C.R. (2014). Integrated Pest Management Current Concepts and Ecological Perspective. Chapter 9: Use of Pheromones in Insect Pest Management, with Special Attention to Wheevil Pheromones, pp. 141-168, Elsevier Inc, United States of America, http://dx.doi.org/10.1016/B978-0-12-398529-3.00010-5
Vincent, C., Hallman, G., Panneton, B., & Fleurat-Lessard, F. (2003). Management of Agricultural Insects with Physical Control Methods. Annual Review of Entomology, 48, 261–281. https://doi.org/10.1146/annurev.ento.48.091801.112639
Witzgall, P., Kirsch, P., & Cork, A. (2010). Sex Pheromones and Their Impact on Pest Management. J. Chem. Ecol., 36, 80–100. https://doi.org/10.1007/s10886-009-9737-y
Yadav, S., Patel, S. & Hasan, W. (2020). Integrated Pest Management-A Holistic Approach for Pest Risk Management. Chapter 11: Insect Pest of Pulse Crops and Their Management, pp. 217-230, Biotech Books, New Delhi.
Zhang, J., Li, H., Liu, M., Zhang, H., Sun, H., Wang, H., Miao, L., Li, M., Shu, R., & Qin, Q. (2020). A Greenhouse Test to Explore and Evaluate Light-Emitting Diode (LED) Insect Traps in the Monitoring and Control of Trialeurodes Vaporariorum. Insects, 11(94), 1-14. https://doi.org/10.3390/insects11020094
Copyright (c) 2025 Journal of Engineering and Technological Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.