Developing Carbon Nanofibers from Gnetum Gnemon Linn Pericarp Using Dual Activators KOH And Melamine as Innovative Electrode Materials for Supercapacitors
Downloads
Synthesis of carbon nanofibers from Gnetum gnemon Linn (GP) biomass with dual activators, KOH and melamine, offers a potential approach for high-performance supercapacitor electrodes. This study evaluated the preparation of GP-based carbon nanofibers through single and double activation, with varying melamine masses of 0.1, 0.3, and 0.5 g at 0.3 M KOH. The pyrolysis (integrated carbonization and physical activation) occurred at 600°C in N₂ and 800°C in CO₂ atmospheres. The material was activated using 0.3 g of melamine in 0.3 M KOH to produce abundant and highly amorphous nanofiber structures. These characteristics contributed to the high specific capacitance of 400 F/g at a scan rate of 1 mV/s and an energy density of 17 Wh/kg at a power of 465 W/kg. These results demonstrated the synergistic effect of melamine and KOH in increasing the active surface area and structural conductivity. This finding confirms the potential of GP biomass that has not been optimally utilized as a sustainable precursor for energy storage applications, especially supercapacitors.
Armynah, B., Nairanti, D., Agustino, A., Taer, E., & Tahir, D. (2024). Discarded Perseaamericana leaf-derived natural O, Mg, and Ca self-doped activated carbon and its applications as electrode materials for high-performance symmetric supercapacitors. Diamond and Related Materials, 143, 110879. https://doi.org/10.1016/j.diamond.2024.110879
Cao, L., Li, H., Xu, Z., Zhang, H., Ding, L., Wang, S., Zhang, G., Hou, H., Xu, W., Yang, F., & Jiang, S. (2021). Comparison of the heteroatoms-doped biomass-derived carbon prepared by one-step nitrogen-containing activator for high performance supercapacitor. Diamond and Related Materials, 114 108316. https://doi.org/10.1016/j.diamond.2021.108316
Chakraborty, R., Sharma, A., Maji, P. K., Rudra, S., Kumar Nayak, A., Nath Chatterjee, P., Naik Banothu, Y., & Pradhan, M. (2024). Nitrogen and oxygen self-doped hierarchical porous carbon nanosheets derived from turmeric leaves for high-performance supercapacitor. Inorganica Chimica Acta, 567, 122056. https://doi.org/10.1016/j.ica.2024.122056
Che, C., Lv, Y., Wu, X., Dong, P., Liang, N., Gao, H., & Guo, J. (2023). A dual-template strategy assisted synthesis of porous coal-based carbon nanofibers for supercapacitors. Diamond and Related Materials, 137, 110140. https://doi.org/10.1016/j.diamond.2023.110140
Chen, T., Luo, L., Luo, L., Deng, J., Wu, X., Fan, M., Du, G., & Zhao, W. (2021). High energy density supercapacitors with hierarchical nitrogen-doped porous carbon as active material obtained from bio-waste. Renewable Energy, 175, 760-769. https://doi.org/10.1016/j.renene.2021.05.006
Du, H., Yang, Y., Zhang, C., Li, Y., Wang, J., Zhao, K., Lu, C., Sun, D., Lu, C., Chen, S., & Ma, X. (2024). Hierarchical porous carbon originated from the directing associated with activation as high-performance electrodes for supercapacitor and Li ion capacitor. Journal of Power Sources, 614, 234988. https://doi.org/10.1016/j.jpowsour.2024.234988
Fan, Y., Fu, F., Yang, D., Liu, W., & Qiu, X. (2024). Thiocyanogen-modulated N, S Co-doped lignin hierarchical porous carbons for high-performance aqueous supercapacitors. Journal of Colloid and Interface Science, 667, 147–156. https://doi.org/10.1016/j.jcis.2024.04.099
Fang, J., Guo, D., Kang, C., Wan, S., Li, S., Fu, L., Liu, G., & Liu, Q. (2019). Enhanced hetero-elements doping content in biomass waste-derived carbon for high performance supercapacitor. International Journal of Energy Research, 43(14), 8811–8821. https://doi.org/10.1002/er.4834
Farma, R., Apriyani, I., Deraman, M., Taer, E., Nanda, R., & Sulistyo, A. (2023). Enhanced electrochemical performance of oxygen , nitrogen , and sulfur trial-doped Nypa fruticans -based carbon nanofiber for high performance supercapacitors. Journal of Energy Storage, 67, 107611. https://doi.org/10.1016/j.est.2023.107611
Farma, R., Maurani, S. F., Apriyani, I., Awitdrus, Yanuar, & Rini, A. S. (2021). Fabrication of carbon electrodes from sago midrib biomass with chemical variation for supercapacitor cell application. Journal of Physics: Conference Series, 2049(1), 1-10 https://doi.org/10.1088/1742-6596/2049/1/012054
Farma, R., Refieyana, C., & Apriyani, I. (2024). Biomass valorization of Mangifera Indica into hierarchical carbon materials with self-doping oxygen assisted carbonization for supercapacitor applications. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 46(1), 5168–5179. https://doi.org/10.1080/15567036.2024.2336176
Fu, S., Fang, Q., Li, A., Li, Z., Han, J., Dang, X., & Han, W. (2021). Accurate characterization of full pore size distribution of tight sandstones by low-temperature nitrogen gas adsorption and high-pressure mercury intrusion combination method. Energy Science and Engineering, 9(1), 80–100. https://doi.org/10.1002/ese3.817
Gopalakrishnan, A., & Badhulika, S. (2020). Effect of self-doped heteroatoms on the performance of biomass-derived carbon for supercapacitor applications. Journal of Power Sources, 480, 228830. https://doi.org/10.1016/j.jpowsour.2020.228830
Han, Q., Wang, X., Gao, N., Wang, X., Chen, C., Xu, B., & Ma, F. (2021). Quantitative determination of ractopamine in swine urine using Fourier transform infrared (FT-IR) spectroscopy analysis. Infrared Physics and Technology, 113, 103653. https://doi.org/10.1016/j.infrared.2021.103653
Huang, C., Su, Y., Gong, H., Jiang, Y., Chen, B., Xie, Z., Zhou, J., & Li, Y. (2023). Biomass-derived multifunctional nanoscale carbon fibers toward fire warning sensors, supercapacitors and moist-electric generators. International Journal of Biological Macromolecules, 256 (1). https://doi.org/10.1016/j.ijbiomac.2023.127878
Huang, S., Qiu, X. Q., Wang, C. W., Zhong, L., Zhang, Z. H., Yang, S. S., Sun, S. R., Yang, D. J., & Zhang, W. L. (2023). Biomass-derived carbon anodes for sodium-ion batteries. Xinxing Tan Cailiao/New Carbon Materials, 38(1), 40–72. https://doi.org/10.1016/S1872-5805(23)60718-8
Huang, Z., Chen, J., Chen, H., Wan, H., Yang, Y., Fan, T., Zhang, Q., Jin, H., Wang, J., & Wang, S. (2024). Tailoring moldy-mulberry-derived carbons for ionic liquid-based supercapacitors with ultrahigh energy density. Diamond and Related Materials, 144. https://doi.org/10.1016/j.diamond.2024.110994
Huo, L., Lv, M., Li, M., Ni, X., Guan, J., Liu, J., Mei, S., Yang, Y., Zhu, M., Feng, Q., Geng, P., Hou, J., Huang, N., Liu, W., Kong, X. Y., Zheng, Y., & Ye, L. (2024). Amorphous MnO2 Lamellae Encapsulated Covalent Triazine Polymer-Derived Multi-Heteroatoms-Doped Carbon for ORR/OER Bifunctional Electrocatalysis. Advanced Materials, 36(18). https://doi.org/10.1002/adma.202312868
Inayat, A., Albalawi, K., Rehman, A. ur, Adnan, Saad, A. Y., Saleh, E. A. M., Alamri, M. A., El-Zahhar, A. A., Haider, A., & Abbas, S. M. (2023). Tunable synthesis of carbon quantum dots from the biomass of spent tea leaves as supercapacitor electrode. Materials Today Communications, 34, 105479. https://doi.org/10.1016/j.mtcomm.2023.105479
Jia, B., Mian, Q., Wu, D., & Wang, T. (2022). Heteroatoms self-doped porous carbon from cottonseed meal using K2CO3 as activator and DES electrolyte for supercapacitor with high energy density. Materials Today Chemistry, 24, 100828. https://doi.org/10.1016/j.mtchem.2022.100828
Khalid, M., Paul, R., Honorato, A. M. B., & Varela, H. (2020). Pinus nigra pine derived hierarchical carbon foam for high performance supercapacitors. Journal of Electroanalytical Chemistry, 863, 114053. https://doi.org/10.1016/j.jelechem.2020.114053
Khedulkar, A. P., Pandit, B., Dang, V. D., & Doong, R. . (2023). Agricultural waste to real worth biochar as a sustainable material for supercapacitor. Science of the Total Environment, 869, 161441. https://doi.org/10.1016/j.scitotenv.2023.161441
Li, L., Zheng, X., Zhang, F., Yu, H., Wang, H., Jia, Z., Sun, Y., Jiang, E., & Xu, X. (2023). Formamide hydrothermal pretreatment assisted camellia shell for upgrading to N-containing chemical and supercapacitor electrode preparation using the residue. Energy, 265, 126247. https://doi.org/10.1016/j.energy.2022.126247
Li, Q., Lu, T., Wang, L., Pang, R., Shao, J., Liu, L., & Hu, X. (2021). Biomass based N-doped porous carbons as efficient CO2 adsorbents and high-performance supercapacitor electrodes. Separation and Purification Technology, 275, 119204. https://doi.org/10.1016/j.seppur.2021.119204
Liu, F., Gao, Y., Zhang, C., Huang, H., Yan, C., Chu, X., Xu, Z., Wang, Z., Zhang, H., Xiao, X., & Yang, W. (2019). Highly microporous carbon with nitrogen-doping derived from natural biowaste for high-performance flexible solid-state supercapacitor. Journal of Colloid and Interface Science, 548, 322–332. https://doi.org/10.1016/j.jcis.2019.04.005
Liu, H., Huang, X., Zhou, M., Gu, J., Xu, M., Jiang, L., Zheng, M., Li, S., & Miao, Z. (2023). Efficient conversion of biomass waste to N/O co-doped hierarchical porous carbon for high performance supercapacitors. Journal of Analytical and Applied Pyrolysis, 169, 105844. https://doi.org/10.1016/j.jaap.2022.105844
Liu, L., An, X., Tian, Z., Yang, G., Nie, S., Shang, Z., Cao, H., Cheng, Z., Wang, S., Liu, H., & Ni, Y. (2022). Biomass derived carbonaceous materials with tailored superstructures designed for advanced supercapacitor electrodes. Industrial Crops and Products, 187(PB), 115457. https://doi.org/10.1016/j.indcrop.2022.115457
Lu, S., Xiao, Q., Yang, W., Wang, X., Guo, T., Xie, Q., & Ruan, Y. (2024). Multi-heteroatom-doped porous carbon with high surface adsorption energy of potassium derived from biomass waste for high-performance supercapacitors. International Journal of Biological Macromolecules, 258, 128794. https://doi.org/10.1016/j.ijbiomac.2023.128794
Ma, Z., Yang, Y., Wu, Y., Xu, J., Peng, H., Liu, X., Zhang, W., & Wang, S. (2019). In-depth comparison of the physicochemical characteristics of bio-char derived from biomass pseudo components: Hemicellulose, cellulose, and lignin. Journal of Analytical and Applied Pyrolysis, 140, 195–204. https://doi.org/10.1016/j.jaap.2019.03.015
Manasa, P., Sambasivam, S., & Ran, F. (2022). Recent progress on biomass waste derived activated carbon electrode materials for supercapacitors applications — A review. Journal of Energy Storage, 54, 105290. https://doi.org/10.1016/j.est.2022.105290
Mehdi, R., Raza, S., Hussain, A., & Hussain, R. (2023). Biomass derived activated carbon by chemical surface modification as a source of clean energy for supercapacitor application. Fuel, 348, 128529. https://doi.org/10.1016/j.fuel.2023.128529
Mei, Y., Liu, S., Wu, L., Zhou, B., Wang, Z., Huang, Z. H., Zhu, Y., & Wang, M. X. (2024). Kelp derived hierarchically porous carbon aerogels with ultrahigh surface area for high-energy-density supercapacitor in aqueous electrolyte. Journal of Energy Storage, 77, 109878. https://doi.org/10.1016/j.est.2023.109878
Nayak, M. K., Sahoo, B. B., Thatoi, D. N., Nazari, S., Ali, R., & Chamkha, A. J. (2024). Recent advances on supercapacitor electrode materials from biowastes- a review. Journal of Science: Advanced Materials and Devices, 9(3), 100734. https://doi.org/10.1016/j.jsamd.2024.100734
Nguyen, T. B., Yoon, B., Nguyen, T. D., Oh, E., Ma, Y., Wang, M., & Suhr, J. (2023). A facile salt-templating synthesis route of bamboo-derived hierarchical porous carbon for supercapacitor applications. Carbon, 206, 383–391. https://doi.org/10.1016/j.carbon.2023.02.060
Okonkwo, C. A., Lv, T., Hong, W., Li, G., Huang, J., Deng, J., Jia, L., Wu, M., Liu, H., & Guo, M. (2020). The synthesis of micromesoporous carbon derived from nitrogen-rich spirulina extract impregnated castor shell based on biomass self-doping for highly efficient supercapacitor electrodes. Journal of Alloys and Compounds, 825, 154009. https://doi.org/10.1016/j.jallcom.2020.154009
Raj, F. R. M. S., Boopathi, G., Jaya, N. V., Kalpana, D., & Pandurangan, A. (2020). N, S codoped activated mesoporous carbon derived from the Datura metel seed pod as active electrodes for supercapacitors. Diamond and Related Materials, 102, 107687. https://doi.org/10.1016/j.diamond.2019.107687
Ramesh, A., Jeyavelan, M., Rajju Balan, J. A. A., Srivastava, O. N., & Leo Hudson, M. S. (2021). Supercapacitor and room temperature H, CO2 and CH4 gas storage characteristics of commercial nanoporous activated carbon. Journal of Physics and Chemistry of Solids, 152, 109969. https://doi.org/10.1016/j.jpcs.2021.109969
Rawat, S., Jinlin, L., Ambalkar, A. A., Hotha, S., Muto, A., & Bhaskar, T. (2023). Syzygium cumini seed biochar for fabrication of supercapacitor: Role of inorganic content/ash. Journal of Energy Storage, 60, 106598. https://doi.org/10.1016/j.est.2022.106598
Shanmuga Priya, M., Divya, P., & Rajalakshmi, R. (2020). A review status on characterization and electrochemical behaviour of biomass derived carbon materials for energy storage supercapacitors. Sustainable Chemistry and Pharmacy, 16, 100243. https://doi.org/10.1016/j.scp.2020.100243
Wang, B., Jiao, R., Shi, F., Li, G., Zhou, J., Huang, Y., & Sun, W. (2023). Novel strategy for efficient conversion of biomass into N-doped graphitized carbon nanosheets as high-performance electrode material for supercapacitor. Journal of Physics and Chemistry of Solids, 181 111509. https://doi.org/10.1016/j.jpcs.2023.111509
Wang, J., Zhang, X., Li, Z., Ma, Y., & Ma, L. (2020). Recent progress of biomass-derived carbon materials for supercapacitors. Journal of Power Sources, 451, 227794. https://doi.org/10.1016/j.jpowsour.2020.227794
Wang, S., Zou, Y., Xu, F., Xiang, C., Peng, H., Zhang, J., & Sun, L. (2021). Morphological control and electrochemical performance of NiCo2O4@NiCo layered double hydroxide as an electrode for supercapacitors. Journal of Energy Storage, 41, 102862. https://doi.org/10.1016/j.est.2021.102862
Wei, X., Wang, X., Wang, Y., Li, C., Bai, Q., Shen, Y., & Uyama, H. (2024). Biomass carbon aerogels by polyatomic synergistic modification and synchronous activation for supercapacitors. Journal of Energy Storage, 77, 110013. https://doi.org/10.1016/j.est.2023.110013
Yang, X., Wang, Q., Lai, J., Cai, Z., Lv, J., Chen, X., Chen, Y., Zheng, X., Huang, B., & Lin, G. (2020). Nitrogen-doped activated carbons via melamine-assisted NaOH/KOH/urea aqueous system for high performance supercapacitors. Materials Chemistry and Physics, 250. https://doi.org/10.1016/j.matchemphys.2020.123201
Yu, Q. X., Li, H. X., Wen, Y. L., Xu, C. X., Qin, S. F., Kuang, Y. F., Zhou, H. H., & Huang, Z. Y. (2023). The in situ formation of ZnS nanodots embedded in honeycomb-like N-S co-doped carbon nanosheets derived from waste biomass for use in lithium-ion batteries. Xinxing Tan Cailiao/New Carbon Materials, 38(3), 543–554. https://doi.org/10.1016/S1872-5805(23)60726-7
Yu, Z., Wang, S., Huang, Y., Zou, Y., Xu, F., Xiang, C., Zhang, J., Xie, J., & Sun, L. (2022). Bi2O3 nanosheet-coated NiCo2O4 nanoneedle arrays for high-performance supercapacitor electrodes. Journal of Energy Storage, 55, 105486. https://doi.org/10.1016/j.est.2022.105486
Yuan, Y., Cai, F., & Yang, L. (2022). Pore structure characteristics and fractal structure evaluation of medium- and high-rank coal. Energy Exploration and Exploitation, 40(1), 328–342. https://doi.org/10.1177/01445987211034315
Zhou, H., Shu, R., Guo, F., Bai, J., Zhan, Y., Chen, Y., & Qian, L. (2021). N-O-P co-doped porous carbon aerogel derived from low-cost biomass as electrode material for high-performance supercapacitors. Diamond and Related Materials, 120, 108614. https://doi.org/10.1016/j.diamond.2021.108614
Zhou, X., Liu, B., Chen, Y., Guo, L., & Wei, G. (2020). Carbon nanofiber-based three-dimensional nanomaterials for energy and environmental applications. Materials Advances, 1(7), 2163–2181. https://doi.org/10.1039/d0ma00492h
Copyright (c) 2025 Journal of Engineering and Technological Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.








