Synthesis of Geopolymer from Ferronickel Aluminosilicate Waste
Downloads
The nickel industry in Indonesia generates massive volumes of ferronickel slag that may harm the environment. This research evaluates the feasibility of utilizing coal fly ash and slag from a ferronickel smelter in Obi Island in Indonesia to synthesize geopolymer, an environmentally friendly cementitious material. Compressive strength of geopolymer mortars was measured as a function of slag particle size (coarse and fine), fly ash mass fraction in the dry aluminosilicate binder precursor blends (0.4 and 0.8), and thermal curing period (24 and 48 hours). Mortar specimens were produced by mixing ash and slag with activator solution and sand. The activator solution contained Na2SiO3 and NaOH at a mass ratio of 2:1. Solid reactants to activator solution mass ratio was 3.33. After heat curing, specimens were held in ambient conditions to an age of 7 days. The compressive strength of the mortars was in the 2.1-24.8 MPa range. Geopolymer mortars were able to comply to Indonesian SNI 15-2049-2004 or US ASTM C1329-05 standards for Portland cement. FTIR and XRD characterizations confirmed the conversion of fly ash and slag into amorphous geopolymers at near ambient temperature. Finer slag particle size increased reactivity, ultimately producing higher compressive strength.
Al-Safi, A. A. (2021). Blast furnace slag-based geopolymer mortars cured at different conditions: modeling and optimization of compressive strength. European Journal of Environmental and Civil Engineering, 25(11), 1949–1961. https://doi.org/10.1080/19648189.2019.1598502
Bewa, C. N., Tchakouté, H. K., Banenzoué, C., Cakanou, L., Mbakop, T. T., Kamseu, E., & Rüscher, C. H. (2020). Acid-based geopolymers using waste fired brick and different metakaolins as raw materials. Applied Clay Science, 198, 105813. https://doi.org/10.1016/j.clay.2020.105813
Bouaissi, A., Li, L., Al Bakri Abdullah, M. M., & Bui, Q.-B. (2019). Mechanical properties and microstructure analysis of FA-GGBS-HMNS based geopolymer concrete. Construction and Building Materials, 210, 198–209. https://doi.org/10.1016/j.conbuildmat.2019.03.202
Cao, R., Li, B., You, N., Zhang, Y., & Zhang, Z. (2018). Properties of alkali-activated ground granulated blast furnace slag blended with ferronickel slag. Construction and Building Materials, 192, 123–132. https://doi.org/10.1016/j.conbuildmat.2018.10.112
Carreño-Gallardo, C., Tejeda-Ochoa, A., Perez-Ordonez, O. I., Ledezma-Sillas, J. E., Lardizabal-Gutierrez, D., Prieto-Gomez, C., Valenzuela-Grado, J. A., Robles Hernandez, F. C., & Herrera-Ramirez, J. M. (2018). In the CO2 emission remediation by means of alternative geopolymers as substitutes for cements. Journal of Environmental Chemical Engineering, 6(4), 4878–4884. https://doi.org/10.1016/j.jece.2018.07.033
Chuewangkam, N., Kidkhunthod, P., & Pinitsoontorn, S. (2024). Direct evidence for the mechanism of early-stage geopolymerization process. Case Studies in Construction Materials, 21, e03539. https://doi.org/10.1016/j.cscm.2024.e03539
Coelho, L. M., Guimarães, A. C. R., Alves Moreira, C. R. C. L., dos Santos, G. P. P., Monteiro, S. N., & da Silveira, P. H. P. M. (2024). Feasibility of Using Ferronickel Slag as a Sustainable Alternative Aggregate in Hot Mix Asphalt. Sustainability, 16(19), 8642. https://doi.org/10.3390/su16198642
Detphan, S., & Chindaprasirt, P. (2009). Preparation of fly ash and rice husk ash geopolymer. International Journal of Minerals, Metallurgy and Materials, 16(6), 720–726. https://doi.org/10.1016/S1674-4799(10)60019-2
Edwin, R. S., Ngii, E., Talanipa, R., Masud, F., & Sriyani, R. (2019). Effect of nickel slag as a sand replacement in strength and workability of concrete. IOP Conference Series: Materials Science and Engineering, 615(1), 012014. https://doi.org/10.1088/1757-899X/615/1/012014
Falayi, T. (2019). Sustainable solidification of ferrochrome slag through geopolymerisation: a look at the effect of curing time, type of activator and liquid solid ratio. Sustainable Environment Research, 29(1), 21. https://doi.org/10.1186/s42834-019-0022-7
Fansuri, H., Prasetyoko, D., Zhang, Z., & Zhang, D. (2012). The effect of sodium silicate and sodium hydroxide on the strength of aggregates made from coal fly ash using the geopolymerisation method. Asia-Pacific Journal of Chemical Engineering, 7(1), 73–79. https://doi.org/10.1002/apj.493
Gomes, K. C., Carvalho, M., Diniz, D. de P., Abrantes, R. de C. C., Branco, M. A., & Carvalho Junior, P. R. O. de. (2019). Carbon emissions associated with two types of foundations: CP-II Portland cement-based composite vs. geopolymer concrete. Matéria (Rio de Janeiro), 24(4). https://doi.org/10.1590/s1517-707620190004.0850
Han, F., Zhang, H., Li, Y., & Zhang, Z. (2023). Recycling and comprehensive utilization of ferronickel slag in concrete. Journal of Cleaner Production, 414, 137633. https://doi.org/10.1016/j.jclepro.2023.137633
Kaya, M., Uysal, M., Yilmaz, K., Karahan, O., & Atis, C. D. (2020). Mechanical properties of class C and F fly ash geopolymer mortars. Journal of the Croatian Association of Civil Engineers, 72(04), 297–309. https://doi.org/10.14256/JCE.2421.2018
Kaze, C. R., Naghizadeh, A., Tchadjie, L., Adesina, A., Noel Yankwa Djobo, J., Deutou Nemaleu, J. G., Kamseu, E., Chinje Melo, U., & Tayeh, B. A. (2022). Lateritic soils based geopolymer materials: A review. Construction and Building Materials, 344, 128157. https://doi.org/10.1016/j.conbuildmat.2022.128157
Kaze, R. C., Naghizadeh, A., Tchadjie, L., Cengiz, Ö., Kamseu, E., & Chinje, F. U. (2024). Formulation of geopolymer binder based on volcanic-scoria and clay brick wastes using rice husk ash-NaOH activator: Fresh and hardened properties. Sustainable Chemistry and Pharmacy, 40, 101627. https://doi.org/10.1016/j.scp.2024.101627
Kuri, J. C., Khan, Md. N. N., & Sarker, P. K. (2021a). Fresh and hardened properties of geopolymer binder using ground high magnesium ferronickel slag with fly ash. Construction and Building Materials, 272, 121877. https://doi.org/10.1016/j.conbuildmat.2020.121877
Kuri, J. C., Majhi, S., Sarker, P. K., & Mukherjee, A. (2021b). Microstructural and non-destructive investigation of the effect of high temperature exposure on ground ferronickel slag blended fly ash geopolymer mortars. Journal of Building Engineering, 43, 103099. https://doi.org/10.1016/j.jobe.2021.103099
Lekshmi, S., Sudhakumar, J., & Thomas, S. (2023). Application of clay in geopolymer system: A state-of-the-art review. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.04.083
Li, J., Sun, Z., Wang, L., Yang, X., Zhang, D., Zhang, X., & Wang, M. (2022). Properties and mechanism of high-magnesium nickel slag-fly ash based geopolymer activated by phosphoric acid. Construction and Building Materials, 345, 128256. https://doi.org/10.1016/j.conbuildmat.2022.128256
Li, Q., Xu, H., Li, F., Li, P., Shen, L., & Zhai, J. (2012). Synthesis of geopolymer composites from blends of CFBC fly and bottom ashes. Fuel, 97, 366–372. https://doi.org/10.1016/j.fuel.2012.02.059
Long, W.-J., Peng, J., Gu, Y., Li, J., Dong, B., Xing, F., & Fang, Y. (2021). Recycled use of municipal solid waste incinerator fly ash and ferronickel slag for eco-friendly mortar through geopolymer technology. Journal of Cleaner Production, 307, 127281. https://doi.org/10.1016/j.jclepro.2021.127281
Maragkos, I., Giannopoulou, I. P., & Panias, D. (2009). Synthesis of ferronickel slag-based geopolymers. Minerals Engineering, 22(2), 196–203. https://doi.org/10.1016/j.mineng.2008.07.003
Marczyk, J., Ziejewska, C., Pławecka, K., Bąk, A., Łach, M., Korniejenko, K., Hager, I., Mikuła, J., Lin, W.-T., & Hebda, M. (2022). Optimizing the L/S Ratio in Geopolymers for the Production of Large-Size Elements with 3D Printing Technology. Materials, 15(9), 3362. https://doi.org/10.3390/ma15093362
McLellan, B. C., Williams, R. P., Lay, J., van Riessen, A., & Corder, G. D. (2011). Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. Journal of Cleaner Production, 19(9–10), 1080–1090. https://doi.org/10.1016/j.jclepro.2011.02.010
Mishra, J., Nanda, B., Patro, S. K., & Krishna, R. S. (2024). A comprehensive review on compressive strength and microstructure properties of GGBS-based geopolymer binder systems. Construction and Building Materials, 417, 135242. https://doi.org/10.1016/j.conbuildmat.2024.135242
Mustofa, M., & Pintowantoro, S. (2017). The Effect of Si/Al Ratio to Compressive Strength and Water Absorption of Ferronickel Slag-based Geopolymer. IPTEK Journal of Proceedings Series, 0(2), 167. https://doi.org/10.12962/j23546026.y2017i2.2334
Ng, C., Alengaram, U. J., Wong, L. S., Mo, K. H., Jumaat, M. Z., & Ramesh, S. (2018). A review on microstructural study and compressive strength of geopolymer mortar, paste and concrete. Construction and Building Materials, 186, 550–576. https://doi.org/10.1016/j.conbuildmat.2018.07.075
Nguyen, Q. D., & Castel, A. (2023). Developing Geopolymer Concrete by Using Ferronickel Slag and Ground-Granulated Blast-Furnace Slag. Ceramics, 6(3), 1861–1878. https://doi.org/10.3390/ceramics6030114
Niş, A. (2019). Compressive strength variation of alkali activated fly ash/slag concrete with different NaOH concentrations and sodium silicate to sodium hydroxide ratios. Journal of Sustainable Construction Materials and Technologies, 4(2), 351–360. https://doi.org/10.29187/jscmt.2019.39
Panagiotopoulou, C., Kakali, G., Tsivilis, S., Perraki, T., & Perraki, M. (2010). Synthesis and Characterisation of Slag Based Geopolymers. Materials Science Forum, 636–637, 155–160. https://doi.org/10.4028/www.scientific.net/MSF.636-637.155
Petrakis, E., Karmali, V., & Komnitsas, K. (2019). Effect of Particle Size on Alkali-Activation of Slag. International Journal of Materials and Metallurgical Engineering, 13(9), 471–474.
Rosas-Casarez, C., Arredondo-Rea, S., Cruz-Enríquez, A., Corral-Higuera, R., Pellegrini-Cervantes, M., Gómez-Soberón, J., & Medina-Serna, T. (2018). Influence of Size Reduction of Fly Ash Particles by Grinding on the Chemical Properties of Geopolymers. Applied Sciences, 8(3), 365. https://doi.org/10.3390/app8030365
Samantasinghar, S., & Singh, S. P. (2019). Fresh and Hardened Properties of Fly Ash–Slag Blended Geopolymer Paste and Mortar. International Journal of Concrete Structures and Materials, 13(1), 47. https://doi.org/10.1186/s40069-019-0360-1
Shang, W., Peng, Z., Xu, F., Tang, H., Rao, M., Li, G., & Jiang, T. (2021). Preparation of enstatite-spinel based glass-ceramics by co-utilization of ferronickel slag and coal fly ash. Ceramics International, 47(20), 29400–29409. https://doi.org/10.1016/j.ceramint.2021.07.108
Simão, L., Fernandes, E., Hotza, D., Ribeiro, M. J., Montedo, O. R. K., & Raupp-Pereira, F. (2021). Controlling efflorescence in geopolymers: A new approach. Case Studies in Construction Materials, 15, e00740. https://doi.org/10.1016/j.cscm.2021.e00740
Tao, J.-C., Wang, X.-Z., Yao, B., Pei, W.-W., Jiren, G., He, W.-Q., & Li, L. (2025). Comparison of rheology and durability of geopolymer and Portland cement concrete at the same strength levels. Construction and Building Materials, 461, 139958. https://doi.org/10.1016/j.conbuildmat.2025.139958
Tchakouté, H. K., & Rüscher, C. H. (2017). Mechanical and microstructural properties of metakaolin-based geopolymer cements from sodium waterglass and phosphoric acid solution as hardeners: A comparative study. Applied Clay Science, 140, 81–87. https://doi.org/10.1016/j.clay.2017.02.002
Thokchom, S., Mandal, K. Kr., & Ghosh, S. (2012). Effect of Si/Al Ratio on Performance of Fly Ash Geopolymers at Elevated Temperature. Arabian Journal for Science and Engineering, 37(4), 977–989. https://doi.org/10.1007/s13369-012-0230-5
Tian, Q., Pan, Y., Bai, Y., Yao, S., & Sun, S. (2022). A Bibliometric Analysis of Research Progress and Trends on Fly Ash-Based Geopolymer. Materials, 15(14), 4777. https://doi.org/10.3390/ma15144777
U.S. Geological Survey. (2024). Mineral commodity summaries 2024. https://doi.org/10.3133/mcs2024
Vásquez, A., Cárdenas, V., Robayo, R. A., & de Gutiérrez, R. M. (2016). Geopolymer based on concrete demolition waste. Advanced Powder Technology, 27(4), 1173–1179. https://doi.org/10.1016/j.apt.2016.03.029
Wang, Y., Hu, Y., He, X., Su, Y., Strnadel, B., & Miao, W. (2023). Hydration and compressive strength of supersulfated cement with low-activity high alumina ferronickel slag. Cement and Concrete Composites, 136, 104892. https://doi.org/10.1016/j.cemconcomp.2022.104892
Wang, Y., Liu, X., Zhang, W., Li, Z., Zhang, Y., Li, Y., & Ren, Y. (2020). Effects of Si/Al ratio on the efflorescence and properties of fly ash based geopolymer. Journal of Cleaner Production, 244, 118852. https://doi.org/10.1016/j.jclepro.2019.118852
Wardhono, A. (2018). Comparison Study of Class F and Class C Fly Ashes as Cement Replacement Material on Strength Development of Non-Cement Mortar. IOP Conference Series: Materials Science and Engineering, 288, 012019. https://doi.org/10.1088/1757-899X/288/1/012019
Wu, Y., Wang, M., Sun, Z., & Zhang, D. (2024). High temperature performance of high magnesium nickel slag based geopolymers with different P/Al molar ratios prepared by acidic activator. Case Studies in Construction Materials, 20, e03275. https://doi.org/10.1016/j.cscm.2024.e03275
Xu, Z., Yue, J., Pang, G., Li, R., Zhang, P., & Xu, S. (2021). Influence of the Activator Concentration and Solid/Liquid Ratio on the Strength and Shrinkage Characteristics of Alkali-Activated Slag Geopolymer Pastes. Advances in Civil Engineering, 2021, 1–11. https://doi.org/10.1155/2021/6631316
Yang, T., Yao, X., & Zhang, Z. (2014). Geopolymer prepared with high-magnesium nickel slag: Characterization of properties and microstructure. Construction and Building Materials, 59, 188–194. https://doi.org/10.1016/j.conbuildmat.2014.01.038
Yang, T., Wu, Q., Zhu, H., & Zhang, Z. (2017). Geopolymer with improved thermal stability by incorporating high-magnesium nickel slag. Construction and Building Materials, 155, 475–484. https://doi.org/10.1016/j.conbuildmat.2017.08.081
Yanning, S., Qiao, H., Qiong, F., Chao, W., & Jianghua, Z. (2024). Application of metallurgical ferronickel slag in building materials: A review. Journal of Building Engineering, 96, 110632. https://doi.org/10.1016/j.jobe.2024.110632
Zulhan, Z., & Agustina, N. (2021). A novel utilization of ferronickel slag as a source of magnesium metal and ferroalloy production. Journal of Cleaner Production, 292, 125307. https://doi.org/10.1016/j.jclepro.2020.125307.
Copyright (c) 2025 Journal of Engineering and Technological Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.








