Design and Application of a Kirigami-Based Soft Robotic Gripper using Finite Element Analysis
Downloads
The demand for adaptable and efficient soft robotic grippers has grown due to their potential applications in industries such as food handling, manufacturing, and logistics. This study explores a Kirigami-based soft robotic gripper, designed to handle a wide range of objects with minimal risk of damage. The gripper utilizes a Kirigami-inspired structure combined with Liquid Silicone Rubber (LSR CN-251), chosen for its flexibility, durability, and food-safe properties. Finite element analysis was conducted to analyze the gripper’s mechanical performance under tensile forces ranging from 0.1 N to 4.3 N, focusing on stress distribution and deformation. Experimental validation was performed to verify the simulated results and assess the gripper’s performance in real-world scenarios. The simulations revealed predictable stress distribution and controlled deformation, with experimental tests demonstrating the gripper’s successful handling of delicate items, irregular objects, heavier item, and others. The Kirigami structure’s passive force distribution enabled a secure yet gentle grip, minimizing the risk of damage. The gripper’s adaptability, flexibility, and lightweight construction were confirmed in these tests. Manufactured from food-safe LSR, the gripper presents a cost-effective and efficient alternative to traditional pneumatic or jamming-based grippers. Limitations in the experimental setup, such as the restricted range of the uArm Swift Pro, were noted, and future research should explore dynamic performance under real-world conditions, enhance the range of motion, and integrate sensory feedback for improved precision.
Angelini, F., Petrocelli, C., Catalano, M.G., Garabini, M., Grioli, G. & Bicchi, A.(2020). SoftHandler: An Integrated Soft Robotic System for Handling Heterogeneous Objects. IEEE Robotics & Automation Magazine, 27(3), 55–72. https://doi.org/10.1109/MRA.2019.2955952
Bhat, A., Ambrose, J.W. & Yeow, R.C.H., Composite Soft Pneumatic Actuators Using 3D Printed Skins (2023). IEEE Robotics and Automation Letters, 8(4), 2086–2093,. https://doi.org/10.1109/LRA.2023.3246841
Branyan, C., Rafsanjani, A., Bertoldi, K., Hatton, R. & Mengüç, Y. (2022). Curvilinear Kirigami Skins Let Soft Bending Actuators Slither Faster. Frontiers in Robotics and AI, 9. https://doi.org/10.3389/frobt.2022.872007
Bryantono, H.D., Saduk, M.R.F., Hong, J., Tsai, M.H. & Tseng, S.C. (2023). Design and Manufacturing of Soft Grippers for Robotics by Injection Molding Technology, Advances in Science. Technology and Engineering Systems Journal, 8(4), 11–17. https://doi.org/10.25046/aj080402
Buzzatto, J., Jiang, H., Liang, J., Busby, B., Lynch, A., Godoy, R.V. & Liarokapis, M.V. (2024) Multi-Layer, Sensorized Kirigami Grippers for Delicate Yet Robust Robot Grasping and Single-Grasp Object Identification. IEEE Access, 12, 115994–116012. https://doi.org/10.1109/ACCESS.2024.3446729
Buzzatto, J., Liang, J., Shahmohammadi, M., Matsunaga, S., Haraguchi, R., Mariyama, T. & Liarokapis, M.V. (2023). A Soft, Multi-layer, Kirigami Inspired Robotic Gripper with a Compact, Compression-based Actuation System. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 4488–4495. https://doi.org/10.1109/IROS55552.2023.10341893
Buzzatto, J., Shahmohammadi, M., Liang, J., Sanches, F., Matsunaga, S., Haraguchi, R. & Liarokapis, M. (2022). Soft, Multi-layer, Disposable, Kirigami based Robotic Grippers: On Handling of Delicate, Contaminated, and Everyday Objects. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 5440–5447. https://doi.org/10.1109/IROS47612.2022.9981625
Cheng, C.Y., Saputra, I., Shi, C.E. & Wang, C.H. (2024). Efficiency Enhancement of Bicycle Anti-lock Braking Systems (ABS): Design and Optimization of Solenoid Actuators Through Finite Element Analysis and Performance Simulation. Advances in Mechanical Engineering, 16(9), 16878132241281238. https://doi.org/10.1177/16878132241281238
Chin Yi, C. & Saputra, I. (2021). Application of FDM Fusion Layering Method to Develop Pneumatic Soft Actuator, Proceedings of the 37th National Academic Symposium of Chinese Mechanical Engineering Society, 37, 981.
Chung, S., Coutinho, A. & Rodrigue, H. (2023). Manufacturing and Design of Inflatable Kirigami Actuators. IEEE Robotics and Automation Letters, 8, 25–32. https://doi.org/10.1109/LRA.2022.3221318
Du, T., Hughes, J., Wah, S., Matusik, W. & Rus, D (2021). Underwater Soft Robot Modeling and Control With Differentiable Simulation. IEEE Robotics and Automation Letters, 6(3), 4994–5001. https://doi.org/10.1109/LRA.2021.3070305
Duduta, M., Clarke, D.R. & Wood, R.J. (2017). A High Speed Soft Robot Based on Dielectric Elastomer Actuators. IEEE International Conference on Robotics and Automation (ICRA), 4346–4351. https://doi.org/10.1109/ICRA.2017.7989501
Gomes, E. O., Chang, S.-J., Saputra, I., & Chang, H.-F. (2025). Development of a Soft Gripper Using Kirigami-Inspired Techniques. 2025 3rd International Conference on Mechatronics, Control and Robotics (ICMCR), 1–5. https://doi.org/10.1109/ICMCR64890.2025.10962858
Guo, Yaguang, Liu, L., Liu, Y., & Leng, J. (2021). Review of Dielectric Elastomer Actuators and Their Applications in Soft Robots. Advanced Intelligent Systems, 3(10), 2000282. https://doi.org/10.1002/aisy.202000282
Guo, Yuxuan, Qin, Q., Han, Z., Plamthottam, R., Possinger, M., & Pei, Q. (2023). Dielectric elastomer artificial muscle materials advancement and soft robotic applications. SmartMat, 4(4), e1203. https://doi.org/10.1002/smm2.1203
Hong, Y., Chi, Y., Wu, S., Li, Y., Zhu, Y., & Yin, J. (2021). Boundary curvature guided programmable shape-morphing kirigami sheets. Nature Communications, 13, null. https://doi.org/10.1038/s41467-022-28187-x
Huang, Weicheng, Huang, X., Majidi, C., & Jawed, M. K. (2020). Dynamic simulation of articulated soft robots. Nature Communications, 11(1), 2233. https://doi.org/10.1038/s41467-020-15651-9
Huang, Wenkai, Xiao, J., & Xu, Z. (2020). A variable structure pneumatic soft robot. Scientific Reports, 10(1), 18778. https://doi.org/10.1038/s41598-020-75346-5
Janghorban, A., & Dehghani, R. (2022). Design and Motion Analysis of a Bio-Inspired Soft Robotic Finger Based on Multi-Sectional Soft Reinforced Actuator. Journal of Intelligent & Robotic Systems, 104, null. https://doi.org/10.1007/s10846-022-01579-3
Kako, Y., & Okumura, K. (2024). Universality in the mechanics of soft Kirigami. Retrieved from https://www.semanticscholar.org/paper/c388a8368abb55a379b6fcf5fb04b274a85d4e13
Karimi, M. A., Alizadehyazdi, V., Busque, B.-P., Jaeger, H. M., & Spenko, M. (2020). A Boundary-Constrained Swarm Robot with Granular Jamming. 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), 291–296. https://doi.org/10.1109/RoboSoft48309.2020.9115996
Li, H., Sun, J., & Herrmann, J. M. (2024). Beyond jamming grippers: Granular material in robotics. Advanced Robotics, 38(11), 715–729. https://doi.org/10.1080/01691864.2024.2348544
Liang, J., Buzzatto, J., Busby, B., Godoy, R. V., Matsunaga, S., Haraguchi, R., … Liarokapis, M. V. (2023). Employing Multi-Layer, Sensorised Kirigami Grippers for Single-Grasp Based Identification of Objects and Force Exertion Estimation. 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 6433–6440. https://doi.org/10.1109/IROS55552.2023.10341390
Lipson, H. (2014). Challenges and Opportunities for Design, Simulation, and Fabrication of Soft Robots. Soft Robotics, 1(1), 21–27. https://doi.org/10.1089/soro.2013.0007
Müller, A., Aydemir, M., Glodde, A., & Dietrich, F. (2020). Design Approach for Heavy-Duty Soft-Robotic-Gripper. Procedia CIRP, 91, 301–305. https://doi.org/10.1016/j.procir.2020.02.180
Piskarev, Y., Devincenti, A., Ramachandran, V., Bourban, P.-E., Dickey, M. D., Shintake, J., & Floreano, D. (2023). A Soft Gripper with Granular Jamming and Electroadhesive Properties. Advanced Intelligent Systems, 5(6), 2200409. https://doi.org/10.1002/aisy.202200409
Shih, B., Christianson, C., Gillespie, K., Lee, S., Mayeda, J., Huo, Z., & Tolley, M. T. (2019). Design Considerations for 3D Printed, Soft, Multimaterial Resistive Sensors for Soft Robotics. Frontiers in Robotics and AI, 6, 30. https://doi.org/10.3389/frobt.2019.00030
Stano, G., & Percoco, G. (2021). Additive manufacturing aimed to soft robots fabrication: A review. Extreme Mechanics Letters, 42, 101079. https://doi.org/10.1016/j.eml.2020.101079
Tang, H., Wang, A., Xue, F., Yang, J., & Cao, Y. (2021). A Novel Hierarchical Soft Actor-Critic Algorithm for Multi-Logistics Robots Task Allocation. IEEE Access, 9, 42568–42582. https://doi.org/10.1109/ACCESS.2021.3062457
Tao, Jiayu, Khosravi, H., Deshpande, V., & Li, S. (2022). Engineering by Cuts: How Kirigami Principle Enables Unique Mechanical Properties and Functionalities. Advanced Science, 10, https://doi.org/10.1002/advs.202204733
Tao, Jiayue, Khosravi, H., Deshpande, V., & Li, S. (2023). Engineering by Cuts: How Kirigami Principle Enables Unique Mechanical Properties and Functionalities. Advanced Science, 10(1), 2204733. https://doi.org/10.1002/advs.202204733
Um, S., Jeong, H., Kim, C. S., Rhee, I., & Choi, H. R. (2024). ReC-Gripper: A Reconfigurable Combined Suction and Fingered Gripper for Various Logistics Picking and Stowing Tasks. IEEE Robotics and Automation Letters, 9(1), 87–94. https://doi.org/10.1109/LRA.2023.3330051
Wang, Z., & Hirai, S. (2018). Chamber dimension optimization of a bellow-type soft actuator for food material handling. 2018 IEEE International Conference on Soft Robotics (RoboSoft), 382–387. https://doi.org/10.1109/ROBOSOFT.2018.8404949
Wang, Z., Hirai, S., & Kawamura, S. (2022). Challenges and Opportunities in Robotic Food Handling: A Review. Frontiers in Robotics and AI, 8, 789107. https://doi.org/10.3389/frobt.2021.789107
Wang, Z., Torigoe, Y., & Hirai, S. (2017). A Prestressed Soft Gripper: Design, Modeling, Fabrication, and Tests for Food Handling. IEEE Robotics and Automation Letters, 2(4), 1909–1916. https://doi.org/10.1109/LRA.2017.2714141
Xu, F.-Y., Jiang, F.-Y., Jiang, Q.-S., & Lu, Y.-X. (2020). Soft Actuator Model for a Soft Robot With Variable Stiffness by Coupling Pneumatic Structure and Jamming Mechanism. IEEE Access, 8, 26356–26371. https://doi.org/10.1109/ACCESS.2020.2968928
Yamanaka, Y., Katagiri, S., Nabae, H., Suzumori, K., & Endo, G. (2020). Development of a Food Handling Soft Robot Hand Considering a High-speed Pick-and-place Task. 2020 IEEE/SICE International Symposium on System Integration (SII), 87–92. https://doi.org/10.1109/SII46433.2020.9026282
Yang, Y., Vella, K., & Holmes, D. P. (2021). Grasping with kirigami shells. Science Robotics, 6(54), eabd6426. https://doi.org/10.1126/scirobotics.abd6426
Youn, J.-H., Jeong, S. M., Hwang, G., Kim, H., Hyeon, K., Park, J., & Kyung, K.-U. (2020). Dielectric Elastomer Actuator for Soft Robotics Applications and Challenges. Applied Sciences, 10(2), 640. https://doi.org/10.3390/app10020640
Zheng, X., Hou, N., Daniël Dinjens, P. J., Wang, R., Dong, C., & Xie, G. (2020). A Thermoplastic Elastomer Belt Based Robotic Gripper. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 9275–9280. https://doi.org/10.1109/IROS45743.2020.9341152
Zhou, L., Ren, L., Chen, Y., Niu, S., Han, Z., & Ren, L. (2021). Bio-Inspired Soft Grippers Based on Impactive Gripping. Advanced Science, 8(9), 2002017. https://doi.org/10.1002/advs.202002017
Zhu, J., Chen, H., Chai, Z., Ding, H., & Wu, Z. (2024). A Dual-Modal Hybrid Gripper with Wide Tunable Contact Stiffness Range and High Compliance for Adaptive and Wide-Range Grasping Objects with Diverse Fragilities. Soft Robotics, 11(3), 371–381. https://doi.org/10.1089/soro.2023.0022
Copyright (c) 2025 Journal of Engineering and Technological Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.








