Optimation PAN/TiO2 Nanofiber Membrane as Separator for Symmetric Supercapacitor
Downloads
Supercapacitor is one of the energy storage systems known for their high-power density, long cycle life, and good cycling stability. To improve supercapacitor performance, we used a polymer PAN composite titanium dioxide (TiO2) as the separator material. Nanofiber separator membranes of PAN/TiO₂ with various masses (0, 5, 10, 15, and 20 wt%) were successfully synthesized using the electrospinning technique. The addition of TiO2 for modified fiber, due to its high absorption rate for energy storage, increased electrolyte uptake and optimized supercapacitor performance. The morphology, functional groups, crystallinity, and thermal stability of the membranes were identified using scanning electron microscope (SEM), Fourier transform infra-red (FTIR), x-ray diffraction (XRD), and thermogravimetric analysis (TGA), respectively. It was found that the membrane with 15 wt% TiO2 exhibited a fiber diameter of 224.73 nm, pore size of 138.98 nm, the highest porosity of 66.50%, electrolyte uptake of 240%, and thermal stability up to 282°C, with a remaining mass of 3.94% after being tested at 1000°C. The electrochemical performance of the supercapacitors was measured using galvanostatic charge-discharge (GCD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The membrane containing 15 wt% TiO2 demonstrated optimum ionic conductivity of 4.4 x 10-4 S/cm, gravimetric capacitance of 57.770 F. g-1, and capacitance retention of 94.22% after 1000 test cycles.
Abdelmaoula, A. E., Shu, J., Cheng, Y., Xu, L., Zhang, G., Xia, Y., Tahir, M., Wu, P., & Mai, L. (2021). Core–Shell MOF-in-MOF Nanopore Bifunctional Host of Electrolyte for High-Performance Solid-State Lithium Batteries. Small Methods, 5(8), 1–9. https://doi.org/10.1002/smtd.202100508
Ahankari, S., Lasrado, D., & Subramaniam, R. (2022). Advances in materials and fabrication of separators in supercapacitors. Materials Advances, 3(3), 1472–1496. https://doi.org/10.1039/d1ma00599e
Arthi, R., Jaikumar, V., & Muralidharan, P. (2021). Comparative performance analysis of electrospun TiO2 embedded poly(vinylidene fluoride) nanocomposite membrane for supercapacitors. Journal of Applied Polymer Science, 138(18), 1–11. https://doi.org/10.1002/app.50323
Arthi, R., Jaikumar, V., & Muralidharan, P. (2022). Development of electrospun PVdF polymer membrane as separator for supercapacitor applications. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 44(1), 2294–2308. https://doi.org/10.1080/15567036.2019.1649746
Azizah, F. N., Sa, U., Diantoro, M., & Subramaniam, R. T. (2023). Development of Electrospun Polymer Nanofiber Membrane Based on PAN / PVDF as a Supercapacitor Separator. 55(2), 200–211. https://doi.org/10.5614/j.eng.technol.sci.2023.55.9
Babu, B. R., Arivanandhan, M., & Jayavel, R. (2023). Fabrication of coin cell supercapattery device using morphology-controlled nickel cobaltite nanostructures as active material. Journal of Energy Storage, 74(PA), 109227. https://doi.org/10.1016/j.est.2023.109227
Barbosa, J. C., Dias, J. P., Lanceros-Méndez, S., & Costa, C. M. (2018). Recent advances in poly(Vinylidene fluoride) and its copolymers for lithium-ion battery separators. Membranes, 8(3), 1–41. https://doi.org/10.3390/membranes8030045
Biradar, M. R., Salkar, A. V., Morajkar, P. P., Bhosale, S. V., & Bhosale, S. V. (2021). Designing neurotransmitter dopamine-functionalized naphthalene diimide molecular architectures for high-performance organic supercapacitor electrode materials. New Journal of Chemistry, 45(21), 9346–9357. https://doi.org/10.1039/d1nj00269d
Cao, Y., Zhang, H., Zhang, Y., Yang, Z., Liu, D., Fu, H., Zhang, Y., Liu, M., & Li, Q. (2022). Epitaxial nanofiber separator enabling folding-resistant coaxial fiber-supercapacitor module. Energy Storage Materials, 49, 102–110. https://doi.org/10.1016/J.ENSM.2022.03.011
Che, G., Lakshmi, B. B., Martin, C. R., Fisher, E. R., & Ruoff, R. S. (1998). Chemical Vapor Deposition Based Synthesis of Carbon Nanotubes and Nanofibers Using a Template Method. Chemistry of Materials, 10(1), 260–267. https://doi.org/10.1021/cm970412f
Chen, M., Cheng, Q., Qian, Y., He, J., & Dong, X. (2020). Alkali cation incorporated MnO2 cathode and carbon cloth anode for flexible aqueous supercapacitor with high wide-voltage and power density. Electrochimica Acta, 342, 136046. https://doi.org/10.1016/j.electacta.2020.136046
Chen, X., Cao, H., He, Y., Zhou, Q., Li, Z., Wang, W., He, Y., & Tao, G. (2022). Advanced functional nanofibers : strategies to improve performance and expand functions. Frontiers Optoelectronics, 1–19. https://doi.org/10.1007/s12200-022-00051-2
Das, M., Das, P. S., Pramanik, N. C., Basu, R. N., & Wasim Raja, M. (2023). Advanced Sustainable Trilayer Cellulosic “Paper Separator” Functionalized with Nano-BaTiO3 for Applications in Li-Ion Batteries and Supercapacitors. ACS Omega, 8(23), 21315–21331. https://doi.org/10.1021/acsomega.3c02859
Diantoro, M., Istiqomah, I., Fath, Y. Al, Mufti, N., Nasikhudin, N., Meevasana, W., & Alias, Y. B. (2022). Hierarchical Activated Carbon–MnO2 Composite for Wide Potential Window Asymmetric Supercapacitor Devices in Organic Electrolyte. Micromachines, 13(11). https://doi.org/10.3390/mi13111989
Dong, T., Arifeen, W. U., Choi, J., Yoo, K., & Ko, T. (2020). Surface-modified electrospun polyacrylonitrile nano-membrane for a lithium-ion battery separator based on phase separation mechanism. Chemical Engineering Journal, 398, 125646. https://doi.org/10.1016/j.cej.2020.125646
Ertekin, Z., Pekmez, K., Kappes, R., & Ekmekçi, Z. (2021). Application of EIS Technique to Investigate the Adsorption of different types of Depressants on Pyrite. Physicochemical Problems of Mineral Processing, 57(3), 112–126. https://doi.org/10.37190/PPMP/136022
Figen, A. K. (2020). History, Basics, and Parameters of Electrospinning Technique. Electrospun Materials and Their Allied Applications, 53–69. https://doi.org/10.1002/9781119655039.ch2
Fu, W., Zhao, E., Ma, R., Sun, Z., Yang, Y., Sevilla, M., Fuertes, A. B., Magasinski, A., & Yushin, G. (2020). Anatase TiO2 Confined in Carbon Nanopores for High-Energy Li-Ion Hybrid Supercapacitors Operating at High Rates and Subzero Temperatures. Advanced Energy Materials, 10(2), 1–8. https://doi.org/10.1002/aenm.201902993
Hartati, S., Zulfi, A., Maulida, P. Y. D., Yudhowijoyo, A., Dioktyanto, M., Saputro, K. E., Noviyanto, A., & Rochman, N. T. (2022). Synthesis of Electrospun PAN/TiO2/Ag Nanofibers Membrane As Potential Air Filtration Media with Photocatalytic Activity. ACS Omega, 7(12), 10516–10525. https://doi.org/10.1021/acsomega.2c00015
He, T., Jia, R., Lang, X., Wu, X., & Wang, Y. (2017). Preparation and Electrochemical Performance of PVdF Ultrafine Porous Fiber Separator-Cum-Electrolyte for Supercapacitor. Journal of The Electrochemical Society, 164(13), E379–E384. https://doi.org/10.1149/2.0631713jes
Hua, W., Zhang, T., Ding, S., & Wang, X. (2021). A novel cost-effective PAN/CNS nanofibrous membranes with rich carboxyl groups for high efficient adsorption of Lanthanum(III) ions. Separation and Purification Technology, 259(Iii), 118216. https://doi.org/10.1016/j.seppur.2020.118216
Hubert, O., Todorovic, N., & Bismarck, A. (2022). Towards separator-free structural composite supercapacitors. Composites Science and Technology, 217, 109126. https://doi.org/10.1016/J.COMPSCITECH.2021.109126
Kailasa, S., Reddy, M. S. B., Maurya, M. R., Rani, B. G., Rao, K. V., & Sadasivuni, K. K. (2021). Electrospun Nanofibers: Materials, Synthesis Parameters, and Their Role in Sensing Applications. Macromolecular Materials and Engineering, 306(11), 1–36. https://doi.org/10.1002/mame.202100410
Karim, S. A., Mohamed, A., Abdel-Mottaleb, M. M., Osman, T. A., & Khattab, A. (2018). Mechanical Properties and the Characterization of Polyacrylonitrile/Carbon Nanotube Composite Nanofiber. Arabian Journal for Science and Engineering, 43(9), 4697–4702. https://doi.org/10.1007/s13369-018-3065-x
Khan, T., Aslam, M., Basit, M., & Raza, Z. A. (2023). Graphene-embedded electrospun polyacrylonitrile nanofibers with enhanced thermo-mechanical properties. Journal of Nanoparticle Research, 25(4), 1–7. https://doi.org/10.1007/s11051-023-05728-z
Khassi, K., Youssefi, M., & Semnani, D. (2020). PVDF/TiO2/graphene oxide composite nanofiber membranes serving as separators in lithium-ion batteries. Journal of Applied Polymer Science, 137(23), 1–9. https://doi.org/10.1002/app.48775
Kim, J. Il, Heo, J., & Park, J. H. (2017). Tailored Metal Oxide Thin Film on Polyethylene Separators for Sodium-Ion Batteries. Journal of The Electrochemical Society, 164(9), A1965–A1969. https://doi.org/10.1149/2.1031709jes
Kim, K. M., Lee, Y. G., & Ko, J. M. (2017). Electrochemical properties of activated carbon supecapacitor adopting poly(acrylonitrile) separator coated by polymer-alkaline electrolytes. Korean Chemical Engineering Research, 55(4), 467–472. https://doi.org/10.9713/kcer.2017.55.4.467
Li, B., Qi, B., Guo, Z., Wang, D., & Jiao, T. (2023). Recent developments in the application of membrane separation technology and its challenges in oil-water separation: A review. Chemosphere, 327(March). https://doi.org/10.1016/j.chemosphere.2023.138528
Li, X. Y., Yan, Y., Zhang, B., Bai, T. J., Wang, Z. Z., & He, T. S. (2021). PAN-derived electrospun nanofibers for supercapacitor applications: ongoing approaches and challenges. In Journal of Materials Science (Vol. 56, Issue 18). Springer US. https://doi.org/10.1007/s10853-021-05939-6
Li, Y., Sun, Y., Jia, S., Song, C., Chen, Z., & Li, Y. (2024). Research progress on TiO2-modified lithium and lithium-sulfur battery separator materials. Ionics, 30(7), 3723–3744. https://doi.org/10.1007/s11581-024-05595-1
Liang, N., Ji, Y., Zuo, D., Zhang, H., & Xu, J. (2019). Improved performance of carbon-based supercapacitors with sulfonated poly(ether ether ketone)/poly(vinyl alcohol) composite membranes as separators. Polymer International, 68(1), 120–124. https://doi.org/10.1002/pi.5704
Liu, B., Huang, Y., Cao, H., Zhao, L., Huang, Y., Song, A., Lin, Y., Li, X., & Wang, M. (2018). A novel porous gel polymer electrolyte based on poly(acrylonitrile-polyhedral oligomeric silsesquioxane) with high performances for lithium-ion batteries. Journal of Membrane Science, 545, 140–149. https://doi.org/10.1016/j.memsci.2017.09.077
Liu, F., & Chuan, X. (2021). Recent developments in natural mineral-based separators for lithium-ion batteries. RSC Advances, 11(27), 16633–16644. https://doi.org/10.1039/d1ra02845f
Liu, Q., Xu, N., Fan, L., Ding, A., & Dong, Q. (2020). Polyacrylonitrile (PAN)/TiO2 mixed matrix membrane synthesis by thermally induced self-crosslinking for thermal and organic-solvent resistant filtration. Chemical Engineering Science, 228, 115993. https://doi.org/10.1016/j.ces.2020.115993
Maqsood, K., Jamil, A., Ahmed, A., Sutisna, B., Nunes, S., & Ulbricht, M. (2023). Effect of TiO2 on Thermal, Mechanical, and Gas Separation Performances of Polyetherimide–Polyvinyl Acetate Blend Membranes. Membranes, 13(8). https://doi.org/10.3390/membranes13080734
Mazuki, N. binti, Rasali, N. M. J., Sahraoui, B., & Samsudin, A. S. (2020). Ionic Conductivity and Electrochemical Properties of Alginate–NN4NO3-Based Biopolymer Electrolytes for EDLC Application. Makara Journal of Technology, 24(1), 7. https://doi.org/10.7454/mst.v24i1.3832
Mei, B. A., Munteshari, O., Lau, J., Dunn, B., & Pilon, L. (2018). Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices. Journal of Physical Chemistry C, 122(1), 194–206. https://doi.org/10.1021/acs.jpcc.7b10582
Mirmohammad Sadeghi, S., Vaezi, M., Kazemzadeh, A., & Jamjah, R. (2018). Morphology enhancement of TiO2/PVP composite nanofibers based on solution viscosity and processing parameters of electrospinning method. Journal of Applied Polymer Science, 135(23), 1–11. https://doi.org/10.1002/app.46337
Mohamed, A., Yousef, S., Ali Abdelnaby, M., Osman, T. A., Hamawandi, B., Toprak, M. S., Muhammed, M., & Uheida, A. (2017). Photocatalytic degradation of organic dyes and enhanced mechanical properties of PAN/CNTs composite nanofibers. Separation and Purification Technology, 182, 219–223. https://doi.org/10.1016/j.seppur.2017.03.051
Mu, X., Yin, X., Qi, M., Yusuf, A., & Liu, S. (2025). Flexible Electrospun Polyacrylonitrile/ZnO Nanofiber Membrane as Separator for Sodium-Ion Batteries with Cycle Stability. Coatings, 15(2). https://doi.org/10.3390/coatings15020141
Nasikhudin, Ismaya, E. P., Diantoro, M., Kusumaatmaja, A., & Triyana, K. (2017). Preparation of PVA/TiO2 Composites Nanofibers by using Electrospinning Method for Photocatalytic Degradation. IOP Conference Series: Materials Science and Engineering, 202(1). https://doi.org/10.1088/1757-899X/202/1/012011
Nkabinde, S. C., Moloto, M. J., & Matabola, K. P. (2020). Optimized Loading of TiO2Nanoparticles into Electrospun Polyacrylonitrile and Cellulose Acetate Polymer Fibers. Journal of Nanomaterials, 2020. https://doi.org/10.1155/2020/9429421
Rajakani, P., & Vedhi, C. (2015). Electrocatalytic properties of polyaniline–TiO2 nanocomposites. International Journal of Industrial Chemistry, 6(4), 247–259. https://doi.org/10.1007/s40090-015-0046-8
Rustamaji, H., Prakoso, T., Devianto, H., Widiatmoko, P., & Nurdin, I. (2022). Optimization of Electrode Material Composition from Activated Carbon, MWCNT & Graphene to Enhance Performance of Supercapacitor. Journal of Engineering and Technological Sciences, 54(5). https://doi.org/10.5614/j.eng.technol.sci.2022.54.5.5
Sahoo, S., Krishnamoorthy, K., Pazhamalai, P., Mariappan, V. K., Manoharan, S., & Kim, S. J. (2019). High performance self-charging supercapacitors using a porous PVDF-ionic liquid electrolyte sandwiched between two-dimensional graphene electrodes. Journal of Materials Chemistry A, 7(38), 21693–21703. https://doi.org/10.1039/c9ta06245a
Sethupathy, M., Sethuraman, V., & Manisankar, P. (2013). Preparation of PVDF/SiO<sub>2</sub> Composite Nanofiber Membrane Using Electrospinning for Polymer Electrolyte Analysis. Soft Nanoscience Letters, 03(02), 37–43. https://doi.org/10.4236/snl.2013.32007
Shekarian, E., Nasr, M. R. J., Mohammadi, T., Bakhtiari, O., & Javanbakht, M. (2019). Enhanced wettability and electrolyte uptake of coated commercial polypropylene separators with inorganic nanopowders for application in lithium-ion battery. Journal of Nanostructures, 9(4), 736–750. https://doi.org/10.22052/JNS.2019.04.015
Singh, G., Kumar, Y., & Husain, S. (2021). Improved electrochemical performance of symmetric polyaniline/activated carbon hybrid for high supercapacitance: Comparison with indirect capacitance. Polymers for Advanced Technologies, 32(11), 4490–4501. https://doi.org/10.1002/pat.5451
Song, J., Guan, R., Xie, M., Dong, P., Yang, X., & Zhang, J. (2022). Advances in electrospun TiO2 nanofibers: Design, construction, and applications. Chemical Engineering Journal, 431(P3), 134343. https://doi.org/10.1016/j.cej.2021.134343
Sun, X. Z., Zhang, X., Huang, B., & Ma, Y. W. (2014). Effects of separator on the electrochemical performance of electrical double-layer capacitor and hybrid battery-supercapacitor. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 30(3), 485–491. https://doi.org/10.3866/PKU.WHXB201401131
Sunil, V., Pal, B., Izwan Misnon, I., & Jose, R. (2020). Characterization of supercapacitive charge storage device using electrochemical impedance spectroscopy. Materials Today: Proceedings, 46, 1588–1594. https://doi.org/10.1016/j.matpr.2020.07.248
T.R Jow, K.Xu, S. P. D. (1999). Nonaqueous Electrolyte Development for Electrochemical Capacitors.
Tang, L., Wu, Y., Lei, Z., He, Y., & Chen, J. (2023). Electrospun PAN membranes strengthened in situ–grown TiO2 particles for high-performance lithium-ion batteries. Ionics, 29(11), 4669–4679. https://doi.org/10.1007/s11581-023-05111-x
Van Hong Thien, D., Ho, M. H., Hsiao, S. W., & Li, C. H. (2015). Wet chemical process to enhance osteoconductivity of electrospun chitosan nanofibers. Journal of Materials Science, 50(4), 1575–1585. https://doi.org/10.1007/s10853-014-8717-y
Wang, T., Wu, D., Yuan, F., Liu, Q., Li, W., & Jia, D. (2023). Chitosan derived porous carbon prepared by amino acid proton salt for high-performance quasi-state-solid supercapacitor. Chemical Engineering Journal, 462(March), 142292. https://doi.org/10.1016/j.cej.2023.142292
Wenten, I. G., Khoiruddin, K., & Siagian, U. W. R. (2024). Green Energy Technologies: A Key Driver in Carbon Emission Reduction. Journal of Engineering and Technological Sciences, 56(2), 143–192. https://doi.org/10.5614/j.eng.technol.sci.2024.56.2.1
Wu, H., Huang, H., Xu, Y., Xu, F., & Zhang, X. (2023). Ultrathin separator with efficient ion transport and superior stability prepared from cotton cellulose for advanced supercapacitors. Chemical Engineering Journal, 470(35), 144089. https://doi.org/10.1016/j.cej.2023.144089
Xie, X., Sheng, L., Arbizzani, C., Gao, B., Gao, X., Yang, L., Bai, Y., Dong, H., Liu, G., Wang, T., Huang, X., & He, J. (2023). Multi-functional groups decorated composite nanofiber separator with excellent chemical stability in ester-based electrolyte for enhancing the lithium-ion transport. Journal of Power Sources, 555(October 2022), 232431. https://doi.org/10.1016/j.jpowsour.2022.232431
Xu, D., Teng, G., Heng, Y., Chen, Z., & Hu, D. (2020). Eco-friendly and thermally stable cellulose film prepared by phase inversion as supercapacitor separator. Materials Chemistry and Physics, 249(December 2019), 122979. https://doi.org/10.1016/j.matchemphys.2020.122979
Yamauchi, M., Saito, H., Sugimoto, T., Mori, S., & Saito, S. (2022). Sustainable organic synthesis promoted on titanium dioxide using coordinated water and renewable energies/resources. Coordination Chemistry Reviews, 472, 214773. https://doi.org/10.1016/j.ccr.2022.214773
Yang, Z., Jia, Y., Niu, Y., Yong, Z., Wu, K., Zhang, C., Zhu, M., Zhang, Y., & Li, Q. (2020). Wet-spun PVDF nanofiber separator for direct fabrication of coaxial fiber-shaped supercapacitors. Chemical Engineering Journal, 400, 125835. https://doi.org/10.1016/j.cej.2020.125835
Yanilmaz, M. (2020). Evaluation of electrospun PVA/SiO2 nanofiber separator membranes for lithium-ion batteries. Journal of the Textile Institute, 111(3), 447–452. https://doi.org/10.1080/00405000.2019.1642070
Yanilmaz, M., Lu, Y., Li, Y., & Zhang, X. (2015). SiO 2 / polyacrylonitrile membranes via centrifugal spinning as a separator for Li-ion batteries. Journal of Power Sources, 273, 1114–1119. https://doi.org/10.1016/j.jpowsour.2014.10.015
Zhang, X., Wang, Y., Yu, X., Tu, J., Ruan, D., & Qiao, Z. (2021). High-performance discarded separator-based activated carbon for the application of supercapacitors. Journal of Energy Storage, 44(PA), 103378. https://doi.org/10.1016/j.est.2021.103378
Zhang, Z. Q., Qian, S., Wang, R. J., & Zhu, Z. F. (2019). Effect of aggregation morphology of nanoparticles on thermal conductivity of nanofluid. Wuli Xuebao/Acta Physica Sinica, 68(5). https://doi.org/10.7498/aps.68.20181740
Zhao, C., Niu, J., Xiao, C., Qin, Z., Jin, X., Wang, W., & Zhu, Z. (2022). Separator with high ionic conductivity and good stability prepared from keratin fibers for supercapacitor applications. Chemical Engineering Journal, 444, 136537. https://doi.org/10.1016/J.CEJ.2022.136537
Zheng, J., Lochala, J. A., Kwok, A., Deng, Z. D., & Xiao, J. (2017). Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications. Advanced Science, 4(8), 1–19. https://doi.org/10.1002/advs.201700032
Zheng, Y., Zhou, R., Zhao, H., & Ye, F. (2022). Oriented PAN / PVDF / PAN laminated nanofiber separator for lithium-ion batteries. https://doi.org/10.1177/00405175211005027
Zheng, Z., Chen, P., Xie, M., Wu, C., Luo, Y., Wang, W., Jiang, J., & Liang, G. (2016). Cell Environment-Di ff erentiated Self-Assembly of Nano fi bers. 4–7. https://doi.org/10.1021/jacs.6b06903
Zhou, D., Dong, Y., Cui, L., Lin, H., & Qu, F. (2014). Synthesis of porous carbon/silica nanostructured microfiber with ultrahigh surface area. Journal of Nanoparticle Research, 16(12). https://doi.org/10.1007/s11051-014-2732-4.
Copyright (c) 2025 Journal of Engineering and Technological Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.