Comparative Study of the Single and Double-Stage Thermochemical Pretreatment of Gracilaria sp. for Biogas Feedstock
Downloads
The objective of this study was to evaluate the effects of single-stage thermochemical pretreatment using sodium hydroxide (NaOH) and a double-stage pretreatment combining NaOH and hydrochloric acid (HCl) on the production of reducing sugars and total phenolic compounds (TPC). The influence of pretreatment duration (30–120 minutes) and solvent concentration (NaOH: 0.2–1 N; HCl: 0.05–0.4 N) at 100 °C was systematically investigated. The results showed that the double-stage pretreatment led to a higher yield of reducing sugars while maintaining relatively low TPC levels. Analysis of variance (ANOVA) revealed that, in the single-stage pretreatment, NaOH concentration had a more pronounced effect than treatment duration. Conversely, in the double-stage pretreatment, duration had a greater influence than HCl concentration. Overall, the double-stage pretreatment, involving NaOH-induced delignification followed by acid-catalyzed hydrolysis, offers a promising strategy for the efficient conversion of macroalgae into reducing sugars while minimizing phenolic compound accumulation.
Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, 101(13), 4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093
Baghel, R., Kumari, P., Reddy, C. R. K., & Jha, B. (2014). Growth, pigments, and biochemical composition of marine red alga Gracilaria crassa. Journal of Applied Phycology, 26, 2143–2150. https://doi.org/10.1007/s10811-014-0250-5
Barbeyron, T., Michel, G., Potin, P., Henrissat, B., & Kloareg, B. (2000). ι-Carrageenases constitute a novel family of glycoside hydrolases, unrelated to that of κ-carrageenases*. Journal of Biological Chemistry, 275(45), 35499–35505. https://doi.org/10.1074/jbc.M003404200
Barbot, Y., Falk, H., & Benz, R. (2014). Thermo-acidic pretreatment of marine brown algae fucus vesiculosus to increase methane production—A disposal principle for macroalgae waste from beaches. Journal of Applied Phycology, 27, 601–609. https://doi.org/10.1007/s10811-014-0339-x
Barbot, Y., Thomsen, L., & Benz, R. (2015). Thermo-acidic pretreatment of beach macroalgae from Rügen to optimize biomethane production—Double benefit with simultaneous bioenergy production and improvement of local beach and waste management. Marine Drugs, 13, 5681–5705. https://doi.org/10.3390/md13095681
Burhani, D., Putri, A., Waluyo, J., & Nofiana, Y. (2017). The effect of two-stage pretreatment on the physical and chemical characteristic of oil palm empty fruit bunch for bioethanol production. In AIP Conference Proceedings, 1904, 020016. https://doi.org/10.1063/1.5011873
Čater, M., Fanedl, L., Malovrh, Š., & Marinšek Logar, R. (2015). Biogas production from brewery spent grain enhanced by bioaugmentation with hydrolytic anaerobic bacteria. Bioresource Technology, 186, 261–269. https://doi.org/10.1016/j.biortech.2015.03.029
Chapleur, O., Madigou, C., Civade, R., Rodolphe, Y., Mazéas, L., & Bouchez, T. (2016). Increasing concentrations of phenol progressively affect anaerobic digestion of cellulose and associated microbial communities. Biodegradation, 27(1), 15–27. https://doi.org/10.1007/s10532-015-9751-4
Chen, S.-F., Mowery, R. A., Castleberry, V. A., Walsum, G. P. van, & Chambliss, C. K. (2006). High-performance liquid chromatography method for simultaneous determination of aliphatic acid, aromatic acid and neutral degradation products in biomass pretreatment hydrolysates. Journal of Chromatography A, 1104(1), 54–61. https://doi.org/10.1016/j.chroma.2005.11.136
Chen, X., Cao, X., Sun, S., Yuan, T., Shi, Q., Zheng, L., & Sun, R. (2018). Evaluating the production of monosaccharides and xylooligosaccharides from the pre-hydrolysis liquor of kraft pulping process by acid and enzymatic hydrolysis. Industrial Crops and Products, 124, 906–911. https://doi.org/10.1016/j.indcrop.2018.08.071
Christiaen, D., Stadler, T., Ondarza, M., & Verdus, M. C. (1987). Structures and functions of the polysaccharides from the cell wall of Gracilaria verrucosa (Rhodophyceae, Gigartinales). Hydrobiologia, 151(1), 139–146. https://doi.org/10.1007/BF00046119
Costa, J. C., Gonçalves, P. R., Nobre, A., & Alves, M. M. (2012). Biomethanation potential of macroalgae Ulva spp. and Gracilaria spp. and in co-digestion with waste activated sludge. Bioresource Technology, 114, 320–326. https://doi.org/10.1016/j.biortech.2012.03.011
Eaton, A. (2005). Standard Methods for the Examination of Water and WasteWater.
Ge, L., Wang, P., & Mou, H. (2011). Study on saccharification techniques of seaweed wastes for the transformation of ethanol. Renewable Energy, 36(1), 84–89. https://doi.org/https://doi.org/10.1016/j.renene.2010.06.001
Hehemann, J.-H., Correc, G., Thomas, F., Bernard, T., Barbeyron, T., Jam, M., Helbert, W., Michel, G., & Czjzek, M. (2012). Biochemical and structural characterization of the complex agarolytic enzyme system from the marine bacterium zobellia galactanivorans*. Journal of Biological Chemistry, 287(36), 30571–30584. https://doi.org/10.1074/jbc.M112.377184
Jeong, G.-T., Kim, S.-K., & Park, D.-H. (2015). Application of solid-acid catalyst and marine macro-algae Gracilaria verrucosa to production of fermentable sugars. Bioresource Technology, 181, 1–6. https://doi.org/10.1016/j.biortech.2015.01.038
Jinghuan, C., Xu, J., Huang, P.-L., & Sun, R.-C. (2016). Effect of alkaline pretreatment on the preparation of regenerated lignocellulose fibers from bamboo stem. Cellulose, 23. https://doi.org/10.1007/s10570-016-0983-1
Ju, X., Grego, C., & Zhang, X. (2013). Specific effects of fiber size and fiber swelling on biomass substrate surface area and enzymatic digestibility. Bioresource Technology, 144, 232–239. https://doi.org/10.1016/j.biortech.2013.06.100
Jung, H., Baek, G., Kim, J., Shin, S. G., & Lee, C. (2016). Mild-temperature thermochemical pretreatment of green macroalgal biomass: Effects on solubilization, methanation, and microbial community structure. Bioresource Technology, 199, 326–335. https://doi.org/https://doi.org/10.1016/j.biortech.2015.08.014
Jung, K.-W., Kim, D.-H., Kim, H.-W., & Shin, H.-S. (2011). Optimization of combined (acid + thermal) pretreatment for fermentative hydrogen production from Laminaria japonica using response surface methodology (RSM). International Journal of Hydrogen Energy, 36(16), 9626–9631. https://doi.org/10.1016/j.ijhydene.2011.05.050
Jung, K.-W., Kim, D.-H., & Shin, H.-S. (2011a). Fermentative hydrogen production from Laminaria japonica and optimization of thermal pretreatment conditions. Bioresource Technology, 102(3), 2745–2750. https://doi.org/10.1016/j.biortech.2010.11.042
Jung, K.-W., Kim, D.-H., & Shin, H.-S. (2011b). Fermentative hydrogen production from Laminaria japonica and optimization of thermal pretreatment conditions. Bioresource Technology, 102(3), 2745–2750. https://doi.org/10.1016/j.biortech.2010.11.042
Kärcher, M. A., Iqbal, Y., Lewandowski, I., & Senn, T. (2016). Efficiency of single stage and two stage pretreatment in biomass with different lignin content. Bioresource Technology, 211, 787–791. https://doi.org/10.1016/j.biortech.2016.04.017
Kawaroe, M., Sari, D. W., Hwangbo, J., & Santoso, J. (2015a). Optimum fermentation process for red macroalgae Gelidium latifolium and Gracillaria verrucosa. Journal of Engineering and Technological Sciences, 47(6), 674–687. https://doi.org/10.5614/j.eng.technol.sci.2015.47.6.7
Kawaroe, M., Sari, D. W., Hwangbo, J., & Santoso, J. (2015b). Optimum fermentation process for Red Macroalgae Gelidium latifolium and Gracillaria verrucosa. Journal of Engineering and Technological Sciences, 47, 674–687. https://doi.org/10.5614/j.eng.technol.sci.2015.47.6.7
Khatri, K., Rathore, M. S., Agrawal, S., & Jha, B. (2019). Sugar contents and oligosaccharide mass profiling of selected red seaweeds to assess the possible utilization of biomasses for third-generation biofuel production. Biomass and Bioenergy, 130, 105392. https://doi.org/10.1016/j.biombioe.2019.105392
Kim, D. (2018). Physico-chemical conversion of lignocellulose: Inhibitor effects and detoxification strategies: A mini review. In Molecules (Vol. 23, Issue 2). MDPI AG. https://doi.org/10.3390/molecules23020309
Kim, J.-W., Kim, K. S., Lee, J.-S., Park, S. M., Cho, H.-Y., Park, J. C., & Kim, J. S. (2011). Two-stage pretreatment of rice straw using aqueous ammonia and dilute acid. Bioresource Technology, 102(19), 8992–8999. https://doi.org/10.1016/j.biortech.2011.06.068
Koch, K. (2015). Calculating the degree of degradation of the volatile solids in continuously operated bioreactors. Biomass and Bioenergy, 74, 79–83. https://doi.org/10.1016/j.biombioe.2015.01.009
Lemus, A., Bird, K., Kapraun, D. F., & Koehn, F. (1991). Agar yield, quality and standing crop biomass of Gelidium serrulatum, Gelidium floridanum and Pterocladia capillacea in Venezuela. Food Hydrocolloids, 5(5), 469–479. https://doi.org/10.1016/S0268-005X(09)80105-7
Li, Y., Zhu, C., Jiang, J., Yang, Z., Feng, W., Li, L., Guo, Y., & Hu, J. (2021). Catalytic hydrothermal liquefaction of Gracilaria corticata macroalgae: Effects of process parameter on bio-oil up-gradation. Bioresource Technology, 319, 124163. https://doi.org/10.1016/j.biortech.2020.124163
Lima, D. R. S., Adarme, O. F. H., Baêta, B. E. L., Gurgel, L. V. A., & de Aquino, S. F. (2018). Influence of different thermal pretreatments and inoculum selection on the biomethanation of sugarcane bagasse by solid-state anaerobic digestion: A kinetic analysis. Industrial Crops and Products, 111, 684–693. https://doi.org/10.1016/j.indcrop.2017.11.048
Lobo Gomes, C., Gonçalves, E., Alberto, C., Suarez, G., De Sousa Rodrigues, D., & Montano, I. C. (2021). Effect of Reaction Time and Sodium Hyroxide Concentration on Delignification and Enzymatic Hydrolysis of Brewer’s Spent Grain from Two Brazilian Brewers. In Celluose Chemistry and Technology Cellulose Chem. Technol., 55(2), 101–112.
Malihan, L. B., Nisola, G. M., & Chung, W. J. (2012). Brown algae hydrolysis in 1-n-butyl-3-methylimidazolium chloride with mineral acid catalyst system. Bioresource Technology, 118, 545–552. https://doi.org/10.1016/j.biortech.2012.05.091
Mankar, A. R., Pandey, A., Modak, A., & Pant, K. K. (2021). Pretreatment of lignocellulosic biomass: A review on recent advances. Bioresource Technology, 334, 125235. https://doi.org/10.1016/j.biortech.2021.125235
Maryana, R., Ma’rifatun, D., Wheni, A. I., Satriyo, K. W., & Rizal, W. A. (2014). Alkaline pretreatment on sugarcane bagasse for bioethanol production. Energy Procedia, 47, 250–254. https://doi.org/10.1016/j.egypro.2014.01.221
Mazarji, M., Kuthiala, S., Tsapekos, P., Alvarado-Morales, M., & Angelidaki, I. (2019). Carbon dioxide anion radical as a tool to enhance lignin valorization. Science of The Total Environment, 682, 47–58. https://doi.org/10.1016/j.scitotenv.2019.05.102
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428. https://doi.org/10.1021/ac60147a030
Modenbach, A. A., & Nokes, S. (2014). Effects of sodium hydroxide pretreatment on structural components of biomass. Transactions of the ASABE, 57, 1187–1198. https://doi.org/10.13031/trans.56.10046
Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. (2016). Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 4th Edition. John Wiley & Sons, Inc., Hoboken.
Necas, J., & Bartosikova, L. (2013). Carrageenan: a review. Veterinarni Medicina, 58(4), 187–205. https://vetmed.agriculturejournals.cz/artkey/vet-201304-0001.php
Oladi S, & Gm, A. (2018). Recovery of non-sugar compounds from bagasse hydrolysates. In J Innovations Energy Sci (Vol. 1). www.scholarena.com
Oliveira, J. V, Alves, M. M., & Costa, J. C. (2014). Design of experiments to assess pre-treatment and co-digestion strategies that optimize biogas production from macroalgae Gracilaria vermiculophylla. Bioresource Technology, 162, 323–330. https://doi.org/10.1016/j.biortech.2014.03.155
Park, J.-H., Hong, J.-Y., Jang, H. C., Oh, S. G., Kim, S.-H., Yoon, J.-J., & Kim, Y. J. (2012). Use of Gelidium amansii as a promising resource for bioethanol: A practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresource Technology, 108, 83–88. https://doi.org/10.1016/j.biortech.2011.12.065
Park, M.-R., Kim, S.-K., & Jeong, G.-T. (2018). Biosugar Production from Gracilaria verrucosa with sulfamic acid pretreatment and subsequent enzymatic hydrolysis. Biotechnology and Bioprocess Engineering, 23(3), 302–310. https://doi.org/10.1007/s12257-018-0090-2
Rasmussen, H., Sørensen, H. R., & Meyer, A. S. (2014). Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms. Carbohydrate Research, 385, 45–57. https://doi.org/10.1016/j.carres.2013.08.029
Roberts, D. A., Paul, N. A., Dworjanyn, S. A., Bird, M. I., & de Nys, R. (2015). Biochar from commercially cultivated seaweed for soil amelioration. Scientific Reports, 5(1), 9665. https://doi.org/10.1038/srep09665
Ross, A. B., Jones, J. M., Kubacki, M. L., & Bridgeman, T. (2008). Classification of macroalgae as fuel and its thermochemical behaviour. Bioresource Technology, 99(14), 6494–6504. https://doi.org/10.1016/j.biortech.2007.11.036
Sambusiti, C., Bellucci, M., Zabaniotou, A., Beneduce, L., & Monlau, F. (2015). Algae as promising feedstocks for fermentative biohydrogen production according to a biorefinery approach: A comprehensive review. Renewable and Sustainable Energy Reviews, 44, 20–36. https://doi.org/10.1016/j.rser.2014.12.013
Sangadji, N. L., Wijaya, C., Muharja, M., Elaine, E., Sangian, H. F., Lau, R., & Widjaja, A. (2025). Two step fractionation of oil palm empty fruit bunches integrating hydrothermal-organosolv pretreatment for enhanced lignin extraction and enzymatic hydrolysis efficiency. Case Studies in Chemical and Environmental Engineering, 12, 101275. https://doi.org/10.1016/j.cscee.2025.101275
Schroyen, M., Vervaeren, H., Vandepitte, H., Van Hulle, S. W. H., & Raes, K. (2015). Effect of enzymatic pretreatment of various lignocellulosic substrates on production of phenolic compounds and biomethane potential. Bioresource Technology, 192, 696–702. https://doi.org/10.1016/j.biortech.2015.06.051
Shi, Y., Du, X., Jin, M., Wu, S., Wang, L., Qiao, N., & Yu, D. (2021). A two-step process for pre-hydrolysis of hemicellulose in pulp-impregnated effluent with high alkali concentration to improve xylose production. Journal of Hazardous Materials, 402, 123573. https://doi.org/10.1016/j.jhazmat.2020.123573
Singh, P., Ojha, S., Mishra, S., Naik, K., & Srichandan, D. (2019). A comparative study of biogasification of wheat straw, sugarcane bagasse and pressmud. Journal of Environmental Science and Health Part A, 54, 306–314. https://doi.org/10.1080/10934529.2018.1548812
Singh, R., Srivastava, M., & Shukla, A. (2016). Environmental sustainability of bioethanol production from rice straw in India: A review. Renewable and Sustainable Energy Reviews, 54, 202–216. https://doi.org/10.1016/j.rser.2015.10.005
Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology (Vol. 299, pp. 152–178). Academic Press. https://doi.org/10.1016/S0076-6879(99)99017-1
Sjulander, N., & Kikas, T. (2022). Two-Step Pretreatment of Lignocellulosic Biomass for High-Sugar Recovery from the Structural Plant Polymers Cellulose and Hemicellulose. Energies, 15, 8898. https://doi.org/10.3390/en15238898
Sung-Soo Jang. (2012). Production of mono sugar from acid hydrolysis of seaweed. African Journal of Biotechnology, 11(8). https://doi.org/10.5897/ajb10.1681
Tanchev, S., Ioncheva, N., Genov, N., & Malchev, E. (1979). Kinetics of the thermal degradation of some phenolic acids. Food / Nahrung, 23(9–10), 863–866. https://doi.org/10.1002/food.19790230903
Tapia-Tussell, R., Avila-Arias, J., Maldonado, J., Valero, D., Olguin Maciel, E., Perez-Brito, D., & Alzate-Gaviria, L. (2018). Biological Pretreatment of Mexican Caribbean Macroalgae Consortiums Using Bm-2 Strain (Trametes hirsuta) and Its Enzymatic Broth to Improve Biomethane Potential. Energies, 11, 494. https://doi.org/10.3390/en11030494
Timung, R., & Goud, V. V. (2018). Subcritical water hydrolysis of spent Java Citronella biomass for production of reducing sugar. Materials Today: Proceedings, 5(11, Part 2), 23128–23135. https://doi.org/10.1016/j.matpr.2018.11.043
Tomasik, P., & Schilling, C. (2004). Chemical modification of starch. Advances in Carbohydrate Chemistry and Biochemistry, 59, 175–403. https://doi.org/10.1016/S0065-2318(04)59005-4
Toscan, A., Fontana, R. C., Andreaus, J., Camassola, M., Lukasik, R. M., & Dillon, A. J. P. (2019). New two-stage pretreatment for the fractionation of lignocellulosic components using hydrothermal pretreatment followed by imidazole delignification: Focus on the polysaccharide valorization. Bioresource Technology, 285, 121346. https://doi.org/10.1016/j.biortech.2019.121346
van Putten, R.-J., van der Waal, J. C., de Jong, E., Rasrendra, C. B., Heeres, H. J., & de Vries, J. G. (2013). Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources. Chemical Reviews, 113(3), 1499–1597. https://doi.org/10.1021/cr300182k
Wang, C., Yang, J., Wen, J., Bian, J., Li, M., Peng, F., & Sun, R. (2019). Structure and distribution changes of Eucalyptus hemicelluloses during hydrothermal and alkaline pretreatments. International Journal of Biological Macromolecules, 133, 514–521. https://doi.org/10.1016/j.ijbiomac.2019.04.127
Wang, G., Zhang, S., Xu, W., Qi, W., Yan, Y., & Xu, Q. (2015). Efficient saccharification by pretreatment of bagasse pith with ionic liquid and acid solutions simultaneously. Energy Conversion and Management, 89, 120–126. https://doi.org/10.1016/j.enconman.2014.09.029
Wang, W., Wang, Q., Tan, X., Qi, W., Yu, Q., Zhou, G., Zhuang, X., & Yuan, Z. (2016). High conversion of sugarcane bagasse into monosaccharides based on sodium hydroxide pretreatment at low water consumption and wastewater generation. Bioresource Technology, 218, 1230–1236. https://doi.org/10.1016/j.biortech.2016.07.074
Wang, W., Wang, X., Zhang, Y., Yu, Q., Tan, X., Zhuang, X., & Yuan, Z. (2020). Effect of sodium hydroxide pretreatment on physicochemical changes and enzymatic hydrolysis of herbaceous and woody lignocelluloses. Industrial Crops and Products, 145, 112145. https://doi.org/10.1016/j.indcrop.2020.112145
Widyaningrum, T., Prastowo, I., Parahadi, M., & Prasetyo, A. D. (2016). Production of bioethanol from the hydrolysate of brown seaweed (Sargassum crassifolium) using a naturally β-glucosidase producing yeast Saccharomyces cereviceae JCM 3012. Biosciences Biotechnology Research Asia, 13(3), 1333–1340. https://doi.org/10.13005/bbra/2274
Wu, L., Zhang, C., Hu, H., Liu, J., Duan, T., Luo, J., & Qian, G. (2017). Phosphorus and short-chain fatty acids recovery from waste activated sludge by anaerobic fermentation: Effect of acid or alkali pretreatment. Bioresource Technology, 240, 192–196. https://doi.org/10.1016/j.biortech.2017.03.016
Xie, Y., Hu, Q., Feng, G., Jiang, X., Hu, J., He, M., Hu, G., Zhao, S., Liang, Y., Ruan, Z., & Peng, N. (2018). Biodetoxification of phenolic inhibitors from lignocellulose pretreatment using kurthia huakuii LAM0618T and subsequent lactic acid fermentation. Molecules, 23(10). https://doi.org/10.3390/molecules23102626
Zhang, S., Guo, H., Du, L., Liang, J., Lu, X., Li, N., & Zhang, K. (2015). Influence of NaOH and thermal pretreatment on dewatered activated sludge solubilisation and subsequent anaerobic digestion: Focused on high-solid state. Bioresource Technology, 185, 171–177. https://doi.org/10.1016/j.biortech.2015.02.050
Copyright (c) 2025 Journal of Engineering and Technological Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.








