Harnessing Rotating Heat Pipes for Passive Electric Motor Cooling: Enhancing Electric Vehicle Efficiency
Downloads
Electric vehicles are equipped with electric motors that convert electrical energy into mechanical energy to propel the vehicle. The motor experiences an increase in temperature during operation due to various losses that cause the motor temperature to rise. The performance of the electric motor will be reduced or even damaged if the heat continues to increase and the temperature exceeds 60°C. Therefore, there is a need for a cooling system that can maintain the electric motor's temperature within its working range. This study aims to investigate and test the rotating heat pipe (RHP) as a passive cooling system for electric motors. The objective of this research is to examine the performance of the RHP. The study employs a RHP with installed thermocouples on its surface. Additionally, a slip ring is utilized to serve as interface between the data acquisition module and the thermocouple sensor. In this investigation, the Rotating Heat Pipe was equipped with two slip rings to measure temperature in rotary conditions. This study proves that using RHP can reduce thermal resistance by 30-66% compared to stationary heat pipes.
Agency, I. E. (2022). An energy sector roadmap to net zero emissions in Indonesia.
Aishwarya, M., & Brisilla, R. M. (2022). Design of energy-efficient induction motor using ANSYS software. Results in Engineering, 16, 100616. https://doi.org/10.1016/j.rineng.2022.100616
Aprianingsih, N., Winarta, A., Ariantara, B., & Putra, N. (2018). Thermal performance of pulsating heat pipe on electric motor as cooling application. E3S Web of Conferences, 67, 03035. https://doi.org/10.1051/e3sconf/20186703035
Barua, H., Ali, M., Nuruzzaman, M., Islam, M. Q., & Feroz, C. M. (2013). Effect of filling ratio on heat transfer characteristics and performance of a closed loop pulsating heat pipe. Procedia Engineering, 56, 88–95. https://doi.org/https://doi.org/10.1016/j.proeng.2013.03.093
Chapman, S. J. (2012). Electric Machinery Fundamentals. New York: The McGraw-Hill Companies, Inc.
Chatterjee, S., Sugilal, G., & Prabhu, S. V. (2018). Impact of inclination on single phase heat transfer in a partially filled rotating pipe. International Journal of Heat and Mass Transfer, 123, 867–878. https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.033
Chaudhry, H. N., Hughes, B. R., & Ghani, S. A. (2012). A review of heat pipe systems for heat recovery and renewable energy applications. Renewable and Sustainable Energy Reviews, 16(4), 2249–2259. https://doi.org/https://doi.org/10.1016/j.rser.2012.01.038
Chen, J., Yuan, D., Jiang, H., Zhang, L., Yang, Y., Fu, Y., Qian, N., & Jiang, F. (2022). Thermal management of bone drilling based on rotating heat pipe. Energies, 15(1), 35. https://doi.org/10.3390/en15010035
Davin, T., Pellé, J., Harmand, S., & Yu, R. (2015). Experimental study of oil cooling systems for electric motors. Applied Thermal Engineering, 75, 1–13. https://doi.org/10.1016/j.applthermaleng.2014.10.060
Denkena, B., Bergmann, B., Kono, K., Ishiguro, R., & Klemme, H. (2021). Characterization of heat conductivity of eccentrically rotating heat pipes used for cooling of motor spindles. MM Science Journal, 2021(July), 4698–4705. https://doi.org/10.17973/MMSJ.2021_7_2021078
Deriszadeh, A., & de Monte, F. (2021). Performance valuation of the electric machine cooling system employing nanofluid as an advanced coolant. ChemEngineering, 5(3). https://doi.org/10.3390/chemengineering5030053
Du, C., & Huang, D. (2022). Evaluation of thermal management scheme of engine cowl based on rotating heat pipe. Journal of Physics: Conference Series, 2369, 012003. https://doi.org/10.1088/1742-6596/2369/1/012003
Gammaidoni, T., Zembi, J., Battistoni, M., Biscontini, G., & Mariani, A. (2023). CFD analysis of an electric motor's cooling system: Model validation and solutions for optimization. Case Studies in Thermal Engineering, 49, 103349. https://doi.org/10.1016/j.csite.2023.103349
Garniwa, I., Dipantara, B., Nugroho, M. V., Sudiarto, B., & Noorfatima, N. (2019). Analysis of the effect of the motor temperature to brush-less direct current motor performance on KARLING electric vehicle. Journal of Physics: Conference Series, 1376, 012024. https://doi.org/10.1088/1742-6596/1376/1/012024
Grandin, M., & Wiklund, U. (2016). Wear and electrical performance of a slip-ring system with silver–graphite in continuous sliding against PVD coated wires. Wear, 348-349, 138–147. https://doi.org/10.1016/j.wear.2015.12.002
Group, H. M. (2022). Impact of Electric Motor Speed on High-Performance EVs,” Hyundai Motor Group’s Dedicated EV And Its Ultra-Speed Motor.
Hodowanec, T. H. a. M. (2009). Electric Motor with Heat Pipes (US007569955B2).
Huang, J., Shoai Naini, S., Miller, R., Rizzo, D., Sebeck, K., Shurin, S., & Wagner, J. (2019). A hybrid electric vehicle motor cooling system—Design, model, and control. IEEE Transactions on Vehicular Technology, 68(5), 4467–4478. https://doi.org/10.1109/tvt.2019.2902135
Lei, S., Xin, S., & Liu, S. (2022). Separate and integrated thermal management solutions for electric vehicles: A review. Journal of Power Sources, 550, 232133. https://doi.org/https://doi.org/10.1016/j.jpowsour.2022.232133
Li, S. F., & Liu, Z. H. (2020). Parametric study of rotating heat pipe performance: A review. Renewable and Sustainable Energy Reviews, 117, Article 109482. https://doi.org/10.1016/j.rser.2019.109482
Lian, W., Chang, W., & Xuan, Y. (2016). Numerical investigation on flow and thermal features of a rotating heat pipe. Applied Thermal Engineering, 101, 92-100. 10.1016/j.applthermaleng.2016.02.110
Luo, F., Ma, C., Liu, J., Zhang, L., & Wang, S. (2023). Theoretical and experimental study on rotating heat pipe towards thermal error control of motorized spindle. International Journal of Thermal Sciences, 185, 108095. https://doi.org/10.1016/j.ijthermalsci.2022.108095
Markus Jaeger, A. R. a. K. H., Thorben Grosse-von Tongeln. (2018). Thermal analysis of an electrical traction motor with an air cooled rotor. 2018 IEEE Transportation Electrification Conference and Expo (ITEC). https://doi.org/10.1109/ITEC.2018.8450239
Previati, G., Mastinu, G., & Gobbi, M. (2022). Thermal management of electrified vehicles—A review. Energies, 15(4).
Putra, N., & Ariantara, B. (2017). Electric motor thermal management system using L-shaped flat heat pipes. Applied Thermal Engineering, 126, 1156–1163. https://doi.org/10.1016/j.applthermaleng.2017.01.090
Qian, N., Fu, Y., Chen, J., Khan, A. M., & Xu, J. (2020). Axial rotating heat-pipe grinding wheel for eco–benign machining: A novel method for dry profile-grinding of Ti–6Al–4V alloy. Journal of Manufacturing Processes, 56, 216–227. https://doi.org/10.1016/j.jmapro.2020.03.023
Reding, B., & Cao, Y. (2017). Sector rotating heat pipe with interconnected branches and reservoir for turbomachinery cooling. Journal of Heat Transfer, 139(1). https://doi.org/10.1115/1.4034487
Saidur, R. (2010). A review on electrical motors energy use and energy savings. Renewable and Sustainable Energy Reviews, 14(3), 877–898. https://doi.org/10.1016/j.rser.2009.10.018
Sandip Garud, K., & Lee, M.-Y. (2024). Thermal management characteristics of electric vehicle driving motor with oil spray cooling based on spray locations and oil types. Applied Thermal Engineering, 248. https://doi.org/10.1016/j.applthermaleng.2024.123234
Sun, Y., Zhang, S., Chen, G., Tang, Y., & Liang, F. (2020). Experimental and numerical investigation on a novel heat pipe based cooling strategy for permanent magnet synchronous motors. Applied Thermal Engineering, 170, 114970. https://doi.org/10.1016/j.applthermaleng.2020.114970
Tetuko, A. P., Hadi, R. K., Faqih, M., Setiadi, E. A., Kurniawan, C., & Sebayang, P. (2019). Heat pipes as a passive cooling system for flywheel energy storage application. Journal of Physics: Conference Series, 1191(1), 012024. https://doi.org/10.1088/1742-6596/1191/1/012024
Tikadar, A., Johnston, D., Kumar, N., Joshi, Y., & Kumar, S. (2021). Comparison of electro-thermal performance of advanced cooling techniques for electric vehicle motors. Applied Thermal Engineering, 183. https://doi.org/10.1016/j.applthermaleng.2020.116182
Wang, H., Bao, Y., Liu, M., Zhu, S., Du, X., & Hou, Y. (2022). Experimental study on dynamic characteristics of cylindrical horizontal axially rotating heat pipe. Applied Thermal Engineering, 209, 118248. https://doi.org/10.1016/j.applthermaleng.2022.118248
Wang, H., Tang, Y., Liu, M., Zhu, S., Zheng, K., & Du, X. (2023). Experimental study on heat transfer performance of axially rotating heat pipe in steady state. International Journal of Thermal Sciences, 184, 107975. https://doi.org/10.1016/j.ijthermalsci.2022.107975
Wang, X., Li, B., Gerada, D., Huang, K., Stone, I., Worrall, S., & Yan, Y. (2022). A critical review on thermal management technologies for motors in electric cars. Applied Thermal Engineering, 201. https://doi.org/10.1016/j.applthermaleng.2021.117758
Wang, Z., Turan, A., & Craft, T. (2023). Review of the state of the art for radial rotating heat pipe technology potentially applicable to gas turbine cooling. Thermo, 3(1), 127–147. https://doi.org/10.3390/thermo3010009
Y. Gai, M. Kimiabeig, J. D. Widmer, Y. C. Chong, J. Goss, U. SanAndres, & Staton, D. A. (2017). Shaft cooling and the influence on the electromagnetic performance of traction motors. 2017 IEEE International Electric Machines and Drives Conference (IEMDC). https://doi.org/10.1109/IEMDC.2017.8002307
Yang, X., Zhang, P., Ma, H., Liu, K., & Zhang, D. (2024). Performance investigation on rotating heat pipes under high rotation speed and hypergravity. International Journal of Thermal Sciences, 203, 109153. https://doi.org/10.1016/j.ijthermalsci.2024.109153
Zhang, L., Chen, J., Jiang, H., & Xu, Y. (2023). Heat transfer characteristics of condensers in rotating heat pipe grinding wheel under impinging jet. Journal of Refrigeration, 44(2), 94–103. https://doi.org/10.3969/j.issn.0253-4339.2023.02.094
Zhang, L., Chen, J., Jiang, H., Xu, Y., Qian, N., Fu, Y., Chen, Y., & Dai, C. (2023). Analysis for green grinding of Ti-6Al-4V titanium alloys with profile rotating heat pipe-grinding wheel. International Journal of Advanced Manufacturing Technology, 131, 2537–2549. https://doi.org/10.1007/s00170-023-11868-2
Zhang, Y., Meng, L., & Liu, M. (2019). Finite angle multichannel space slip ring design. IOP Conference Series: Earth and Environmental Science, 252(2), 022108. https://doi.org/10.1088/1755-1315/252/2/022108
Zhang, Z., Song, Q., Wang, X., Zhao, S., & Shah, S. W. A. (2024). Reynolds number based optimization on liquid cooling system for permanent magnet synchronous motor of electric vehicle. Case Studies in Thermal Engineering, 60, 104720. https://doi.org/10.1016/j.csite.2024.104720
Copyright (c) 2025 Journal of Engineering and Technological Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.








