Mechanical Behavior of Concrete Reinforced with Natural Palm and Mango Fibers

Downloads
The search for new natural materials as reinforcement in concrete has increased as an economic and ecological alternative. The purpose of this work is to study the behavior of natural mango (mangifera indica) and palm fibers without treatment, incorporated into concrete to improve its mechanical properties. The physical properties of the coarse (gravel) and fine (sand) aggregates were analyzed, as well as the physical and mechanical characteristics of the fibers used in this research. Concrete mixtures were prepared incorporating 0.2% and 0.4% fiber content with respect to the weight of fine aggregate and a fiber length of 10 and 30 mm respectively. The experimental results showed that all the fibers used in different concentrations decreased the workability and air content of the concrete paste, consequently, the porosity had a downward trend. Short mango fibers at 0.4% concentration and palm fiber at 0.2% increase the compressive strength by 12% compared to the control sample.
Achour, A., Ghomari, F., & Belayachi, N. (2017). Properties of cementitious mortars reinforced with natural fibers. Journal of adhesion science and Technology, 31(17), 1938–1962. doi: 10.1080/01694243.2017.1290572
Afroughsabet, V., Biolzi, L., & Ozbakkaloglu, T. (2016). High-performance fiber-reinforced concrete: a review. Journal of materials science, 51, 6517–6551. doi: 10.1007/s10853-016-9917-4
Ahamed, M. S., Ravichandran, P., & Krishnaraja, A. R. (2021, February). Natural fibers in concrete–A review. In IOP Conference Series: Materials Science and Engineering, 1055(1), 012038. IOP Publishing. doi: 10.1088/1757-899X/1055/1/012038
Ahmad, J., Arbili, M. M., Majdi, A., Althoey, F., Farouk Deifalla, A., & Rahmawati, C. (2022). Performance of concrete reinforced with jute fibers (natural fibers): A review. Journal of Engineered Fibers and Fabrics, 17, 15589250221121871. doi: 10.1177/155892502211218
Ahmad, J., Majdi, A., Al-Fakih, A., Deifalla, A. F., Althoey, F., El Ouni, M. H., & El-Shorbagy, M. A. (2022). Mechanical and durability performance of coconut fiber reinforced concrete: a state-of-the-art review. Materials, 15(10), 3601. doi:10.3390/ma15103601
Ahmed, K. U., Geremew, A., & Jemal, A. (2022). The comparative study on the performance of bamboo fiber and sugarcane bagasse fiber as modifiers in asphalt concrete production. Heliyon, 8(7). doi: 10.1016/j.heliyon.2022.e09842
Akinyemi, B. A., & Dai, C. (2020). Development of banana fibers and wood bottom ash modified cement mortars. Construction and Building Materials, 241, 118041. doi:10.1016/j.conbuildmat.2020.118041
Ali, B., Hawreen, A., Kahla, N. B., Amir, M. T., Azab, M., & Raza, A. (2022). A critical review on the utilization of coir (coconut fiber) in cementitious materials. Construction and Building Materials, 351, 128957. doi:10.1016/j.conbuildmat.2022.128957
American Concrete Institute., ACI.211.1-91 (Reapproved 2009): Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete, 1–38.
Armas-Ruiz, D., Ruiz-Galarza, S., Piován, M., Carrión-Matamoros, L., & Narváez-Muñoz, C. (2016). Caracterización de propiedades mecánicas de las fibras de banano de la corteza y el cuerpo del tallo. Científica, 20(1), 21–31.
Arsène, M. A., Savastano Jr, H., Allameh, S. M., Ghavami, K., & Soboyejo, W. O. (2003, November). Cementitious composites reinforced with vegetable fibers. In Anais da 1st inter american conference on nonconventional materials and technologies in the ecoconstruction and infrastructure. João Pessoa-PB.
Aslam, F., Zaid, O., Althoey, F., Alyami, S. H., Qaidi, S. M., de Prado Gil, J., & Martínez‐García, R. (2023). Evaluating the influence of fly ash and waste glass on the characteristics of coconut fibers reinforced concrete. Structural Concrete, 24(2), 2440-2459. doi:10.1002/suco.202200183
ASTM International (2020). “ASTM C143/C143M-20, Standard Test Method for Slump of Hydraulic-Cement Concrete”. doi: 10.1520/C0143_C0143M-20
ASTM International (2022). “ASTM D638 -22, Standard Test Method for Tensile Properties of Plastics ”, doi: 10.1520/D0638-22.
ASTM International (2022). “ASTM C231/C231M-22, Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method”. doi: 10.1520/C0231_C0231M-22
ASTM International (2022). “ASTM C31/C31M-22, Standard Practice for Making and Curing Concrete Test Specimens in the Field”. doi:10.1520/C0031_C0031M-22
ASTM International (2022). “ASTM C78/C78M-22, Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading)”. doi: 10.1520/C0078_C0078M-22
ASTM, International (2020). ASTM C150/C150M-20: Standard specification for Portland cement. doi: 10.1520/C0150_C0150M-22
Asyraf, M. R. M., Khan, T., Syamsir, A., & Supian, A. B. M. (2022). Synthetic and natural fiber-reinforced polymer matrix composites for advanced applications. Materials, 15(17), 6030. doi: 10.3390/ma15176030
Balreddy, M. S., Nethra, P., & Naganna, S. R. (2023). Performance evaluation of open-graded bituminous concrete modified with natural fibers. Sustainability, 15(15), 11952. doi:10.3390/su151511952
Bouasker, M., Belayachi, N., Hoxha, D., & Al-Mukhtar, M. (2014). Physical characterization of natural straw fibers as aggregates for construction materials applications. Materials, 7(4), 3034-3048. doi:10.3390/ma7043034
Camargo, M. M., Adefrs Taye, E., Roether, J. A., Tilahun Redda, D., & Boccaccini, A. R. (2020). A review on natural fiber-reinforced geopolymer and cement-based composites. Materials, 13(20), 4603. doi: 10.3390/ma13204603
Castillo-Lara, J. F., Flores-Johnson, E. A., Valadez-Gonzalez, A., Herrera-Franco, P. J., Carrillo, J. G., Gonzalez-Chi, P. I., & Li, Q. M. (2020). Mechanical properties of natural fiber reinforced foamed concrete. Materials, 13(14), 3060. doi:10.3390/ma13143060
Chauhan, V., Kärki, T., & Varis, J. (2022). Review of natural fiber-reinforced engineering plastic composites, their applications in the transportation sector and processing techniques. Journal of Thermoplastic Composite Materials, 35(8), 1169-1209.
Colangelo, F., Cioffi, R., & Farina, I. (Eds.). (2021). Handbook of sustainable concrete and industrial waste management: recycled and artificial aggregate, innovative eco-friendly binders, and life cycle assessment. Woodhead Publishing.
de Azevedo, A. R., Klyuev, S., Marvila, M. T., Vatin, N., Alfimova, N., de Lima, T. E., ... & Olisov, A. (2020). Investigation of the Potential Use of Curauá Fiber for Reinforcing Mortars. Fibers, 8(11). doi:10.3390/fib8110069
de Azevedo, A. R., Marvila, M. T., Tayeh, B. A., Cecchin, D., Pereira, A. C., & Monteiro, S. N. (2021). Technological performance of açaí natural fibre reinforced cement-based mortars. Journal of Building Engineering, 33, 101675. doi:10.1016/j.jobe.2020.101675
de Souza Rodrigues, C., Ghavami, K., & Stroeven, P. (2006). Porosity and water permeability of rice husk ash-blended cement composites reinforced with bamboo pulp. Journal of materials science, 41(21), 6925-6937.
Difonzo, G., de Gennaro, G., Pasqualone, A., & Caponio, F. (2022). Potential use of plant‐based by‐products and waste to improve the quality of gluten‐free foods. Journal of the Science of Food and Agriculture, 102(6), 2199-2211. doi:10.1002/jsfa.11702
Ede, A. N., & Agbede, J. O. (2015). Use of coconut husk fiber for improved compressive and flexural strength of concrete. International Journal of Scientific and Engineering Research, 6(1), 968-974.
Elbehiry, A., Elnawawy, O., Kassem, M., Zaher, A., Uddin, N., & Mostafa, M. (2020). Performance of concrete beams reinforced using banana fiber bars. Case Studies in Construction Materials, 13, e00361. doi:10.1016/j.cscm.2020.e00361
Elsaid, A., Dawood, M., Seracino, R., & Bobko, C. (2011). Mechanical properties of kenaf fiber reinforced concrete. Construction and Building Materials, 25(4), 1991-2001. doi:10.1016/j.conbuildmat.2010.11.052
Escalante, M. A. M. (2018). Apropiación cultural: El caso de las artesanías tradicionales. In Anales del Museo Nacional de Antropología, 20, 158–166). Dirección General de Bellas Artes y de Conservación y Restauración de Bienes Culturales. ISSN: 2340-3519.
FAOSTAT, F. (2021). Food and agriculture organization of the United Nations. Statistical database. Available online: www.fao.org/faostat
Flores Nicolás, A., Menchaca Campos, E. C., Flores Nicolás, M., Martínez González, J. J., González Noriega, O. A., & Uruchurtu Chavarín, J. (2024). Influence of Recycled High-Density Polyethylene Fibers on the Mechanical and Electrochemical Properties of Reinforced Concrete. Fibers, 12(3), 24. doi: 10.3390/fib12030024
Flores-Nicolás, A., Flores-Nicolás, M., & Uruchurtu-Chavarín, J. (2021). Corrosion effect on reinforced concrete with the addition of graphite powder and its evaluation on physical-electrochemical properties. Revista ALCONPAT, 11(1), 18–33. doi:10.21041/ra.v11i1.501
Galicia-Aldama, E., Mayorga, M., Arteaga-Arcos, J. C., & Romero-Salazar, L. (2019). Rheological behaviour of cement paste added with natural fibres. Construction and Building Materials, 198, 148–157. doi:10.1016/j.conbuildmat.2018.11.179.
García, S. L. Q., & Salcedo, L. O. G. (2006). Uso de fibra de estopa de coco para mejorar las propiedades mecánicas del concreto. Ingeniería y Desarrollo, (20), 134-150.
García-Mahecha, M., Soto-Valdez, H., Carvajal-Millan, E., Madera-Santana, T. J., Lomelí-Ramírez, M. G., & Colín-Chávez, C. (2023). Bioactive compounds in extracts from the agro-industrial waste of mango. Molecules, 28(1), 458. doi: 10.3390/molecules28010458
Golewski, G. L. (2018). Evaluation of morphology and size of cracks of the Interfacial Transition Zone (ITZ) in concrete containing fly ash (FA). Journal of hazardous materials, 357, 298–304. doi: 10.1016/j.jhazmat.2018.06.016
Hasan, M., Saidi, T., Jamil, M., Amalia, Z., & Mubarak, A. (2022). Mechanical properties and absorption of high-strength fiber-reinforced concrete (HSFRC) with sustainable natural fibers. Buildings, 12(12), 2262. doi:10.3390/buildings12122262.
Herrera Quispe, C. A., & Quispe De La Cruz, R. M. (2019). Análisis del comportamiento del concreto hidráulico reforzado con fibras naturales de agave para el diseño de pavimento rígido con el método mecanístico-empírico en la av. universitaria de la provincia de huancavelica-2018.
Hidalgo, M., Muñoz, M., & Quintana, K. (2012). Análisis mecánico del compuesto polietileno aluminio reforzado con fibras cortas de fique en disposición bidimensional. Revista Latinoamericana de Metalurgia y Materiales, 32(1), 89–95. ISSN 0255-6952.
Hussain, T., & Ali, M. (2019). Improving the impact resistance and dynamic properties of jute fiber reinforced concrete for rebars design by considering tension zone of FRC. Construction and Building Materials, 213, 592–607. doi:10.1016/j.conbuildmat.2019.04.036
Jamshaid, H., Mishra, R. K., Raza, A., Hussain, U., Rahman, M. L., Nazari, S., ... & Choteborsky, R. (2022). Natural cellulosic fiber reinforced concrete: influence of fiber type and loading percentage on mechanical and water absorption performance. Materials, 15(3), 874. doi:10.3390/ma15030874
Jimenez Iriarte, M. A., & Torres Pertuz, F. A. (2020). Análisis sistemático de literatura–Analisis de un concreto convencional con un concreto con material alternativo (Bagazo de caña de azucar).
Juárez Alvarado, C. A., Rodríguez López, P., Rivera Villarreal, R., & Rechy de Von Roth, M. D. L. Á. (2003). Uso de las fibras naturales de lechuguilla como refuerzo en el concreto. Ciencia Uanl, 6(4).
Jurowski, K., & Grzeszczyk, S. (2018). Influence of selected factors on the relationship between the dynamic elastic modulus and compressive strength of concrete. Materials, 11(4), 477. doi:10.3390/ma11040477
Korniejenko, K., Łach, M., Hebdowska-Krupa, M., & Mikuła, J. (2020). Impact of flax fiber reinforcement on mechanical properties of solid and foamed geopolymer concrete. Advances in Technology Innovation, 6(1), 11. doi:10.46604/aiti.2021.5294
Krishna, N. K., Prasanth, M., Gowtham, R., Karthic, S., & Mini, K. M. (2018). Enhancement of properties of concrete using natural fibers. Materials Today: Proceedings, 5(11), 23816-23823. doi:10.1016/j.matpr.2018.10.173
Luhar, S., Suntharalingam, T., Navaratnam, S., Luhar, I., Thamboo, J., Poologanathan, K., & Gatheeshgar, P. (2020). Sustainable and renewable bio-based natural fibres and its application for 3D printed concrete: A review. Sustainability, 12(24), 10485. doi:10.3390/su122410485
Lumingkewas, R. H., Husen, A., & Andrianus, R. (2017). Effect of fibers length and fibers content on the splitting tensile strength of coconut fibers reinforced concrete composites. Key Engineering Materials, 748, 311-315. doi:10.4028/www.scientific.net/KEM.748.311.
Machaka, M., Basha, H., Abou Chakra, H., & Elkordi, A. (2014). Alkali treatment of fan palm natural fibers for use in fiber reinforced concrete. European scientific journal, 10(12).
Mansour, R., El Abidine, R. Z., & Brahim, B. (2017). Performance of polymer concrete incorporating waste marble and alfa fibers. Advances in concrete construction, 5(4), 331. doi:10.12989/acc.2017.5.4.331.
Marroquín Albadan, H. T., & López Castro, M. F. (2019). Análisis de la respuesta mecánica del concreto hidráulico para pavimentos modificados con fibras de bejuco (Doctoral dissertation).
Martinez, S., Teresa, M., Sánchez Herrera, L. M., Torres García, G., & GARCIA PAREDES, J. D. (2012). Red de valor del mango y sus desechos con base en las propiedades nutricionales y funcionales.
Marvila, M. T., Rocha, H. A., de Azevedo, A. R. G., Colorado, H. A., Zapata, J. F., & Vieira, C. M. F. (2021). Use of natural vegetable fibers in cementitious composites: Concepts and applications. Innovative Infrastructure Solutions, 6, 1–24. doi: 10.1007/s41062-021-00551-8
Mei, K., Cheng, X., Gu, T., Zheng, Y., Gong, P., Li, B., ... & Dai, B. (2021). Effects of Fe and Al ions during hydrogen sulphide (H2S)-induced corrosion of tetracalcium aluminoferrite (C4AF) and tricalcium aluminate (C3A). Journal of hazardous materials, 403, 123928. doi:10.1016/j.jhazmat.2020.123928
Meisuh, B. K., Kankam, C. K., & Buabin, T. K. (2018). Effect of quarry rock dust on the flexural strength of concrete. Case studies in construction materials, 8, 16-22.
Mejías-Brizuela, N., Orozco-Guillén, E., & Galáan-Hernández, N. (2016). Aprovechamiento de los residuos agroindustriales y su contribución al desarrollo sostenible de México. Revista de Ciencias Ambientales y Recursos Naturales, 2(6), 27–41.
Moreno, E. I., Solís-Carcaño, R. G., Varela-Rivera, J., & Gómez López, M. A. (2016). Resistencia a tensión del concreto elaborado con agregado calizo de alta absorción. Concreto y cemento. Investigación y desarrollo, 8(1), 35-45.
Nicolás, A. F., Campos, E. C. M., Nicolás, M. F., Noriega, O. A. G., Peréz, C. A. G., & Chavarín, J. U. (2024). Corrosion Resistance of Reinforcing Steel in Concrete Using Natural Fibers Treated with Used Engine Oil. Civil Engineering Journal, 10(4), 1012-1033. doi: 10.28991/CEJ-2024-010-04-02
Pacheco-Jiménez, A. A., Heredia, J. B., Gutiérrez-Grijalva, E. P., Quintana-Obregón, E. A., & Muy-Rangel, M. D. (2022). Potencial industrial de la cáscara de mango (Mangifera indica L.) para la obtención de pectina en México. TIP. Revista especializada en ciencias químico-biológicas, 25. doi: 10.22201/fesz.23958723e.2022.419.
Perez, O. F. A., Florez, D. R., Vergara, L. M. Z., & Benavides, K. V. H. (2022). Innovative use of agro-waste cane bagasse ash and waste glass as cement replacement for green concrete. Cost analysis and carbon dioxide emissions. Journal of Cleaner Production, 379, 134822. doi:10.1016/j.jclepro.2022.134822
Poletto, M., Ornaghi Junior, H. L., & Zattera, A. J. (2014). Native cellulose: structure, characterization and thermal properties. Materials, 7(9), 6105-6119. doi:10.3390/ma7096105.
Ramakrishna, G., & Sundararajan, T. (2005). Studies on the durability of natural fibres and the effect of corroded fibres on the strength of mortar. Cement and Concrete Composites, 27(5), 575-582. doi:10.1016/j.cemconcomp.2004.09.008
Saad, M., Agwa, I. S., Abdelsalam Abdelsalam, B., & Amin, M. (2022). Improving the brittle behavior of high strength concrete using banana and palm leaf sheath fibers. Mechanics of advanced materials and structures, 29(4), 564-573. doi:10.1080/15376494.2020.1780352
Saha, A., Kumar, S., & Zindani, D. (2021). Investigation of the effect of water absorption on thermomechanical and viscoelastic properties of flax‐hemp‐reinforced hybrid composite. Polymer Composites, 42(9), 4497-4516. doi:10.1002/pc.26164.
Sekar, S., Suresh Kumar, S., Vigneshwaran, S., & Velmurugan, G. (2022). Evaluation of mechanical and water absorption behavior of natural fiber-reinforced hybrid biocomposites. Journal of Natural Fibers, 19(5), 1772-1782. doi: 10.1080/15440478.2020.1788487.
Shah, I., Jing, L., Fei, Z. M., Yuan, Y. S., Farooq, M. U., & Kanjana, N. (2022). A review on chemical modification by using sodium hydroxide (NaOH) to investigate the mechanical properties of sisal, coir and hemp fiber reinforced concrete composites. Journal of Natural Fibers, 19(13), 5133-5151. doi: 10.1080/15440478.2021.1875359
Shah, I., Li, J., Yang, S., Zhang, Y., & Anwar, A. (2022). Experimental investigation on the mechanical properties of natural fiber reinforced concrete. Journal of Renewable Materials, 10(5), 1307. doi: 10.32604/jrm.2022.017513
SIAP, S. (2021). Servicio de información agroalimentaria y pesquera. Reporte especial naranja. Available in https://www.gob.mx/siap/acciones-y-programas/produccion-agricola-33119
Silva, G., Kim, S., Bertolotti, B., Nakamatsu, J., & Aguilar, R. (2020). Optimization of a reinforced geopolymer composite using natural fibers and construction wastes. Construction and Building Materials, 258, 119697. doi:10.1016/j.conbuildmat.2020.119697.
Sumesh, K. R., Kavimani, V., Rajeshkumar, G., Indran, S., & Khan, A. (2022). Mechanical, water absorption and wear characteristics of novel polymeric composites: impact of hybrid natural fibers and oil cake filler addition. Journal of Industrial Textiles, 51(4_suppl), 5910S-5937S. doi:10.1177/1528083720971344
Sustaita Rivera, F. (2009). Utilización de residuos de palma de sombrero (Brahea dulcis) como sustrato de cultivo. (Doctoral dissertation, Ph. D. thesis, Colegio de Potsgraduados, México).
Tamanna, T. A., Belal, S. A., Shibly, M. A. H., & Khan, A. N. (2021). Characterization of a new natural fiber extracted from Corypha taliera fruit. Scientific reports, 11(1), 7622. doi:10.1038/s41598-021-87128-8
Trabelsi, A., & Kammoun, Z. (2020). Mechanical properties and impact resistance of a high-strength lightweight concrete incorporating prickly pear fibres. Construction and Building Materials, 262, 119972. doi:10.1016/j.conbuildmat.2020.119972.
Wei, J., Ma, S., & D'Shawn, G. T. (2016). Correlation between hydration of cement and durability of natural fiber-reinforced cement composites. Corrosion Science, 106, 1–15. doi: 10.1016/j.corsci.2016.01.020
Yorseng, K., Rangappa, S. M., Pulikkalparambil, H., Siengchin, S., & Parameswaranpillai, J. (2020). Accelerated weathering studies of kenaf/sisal fiber fabric reinforced fully biobased hybrid bioepoxy composites for semi-structural applications: Morphology, thermo-mechanical, water absorption behavior and surface hydrophobicity. Construction and Building Materials, 235, 117464. doi:10.1016/j.conbuildmat.2019.117464
Yun, K. K., Hossain, M. S., Han, S., & Seunghak, C. (2022). Rheological, mechanical properties, and statistical significance analysis of shotcrete with various natural fibers and mixing ratios. Case Studies in Construction Materials, 16, e00833. doi:10.1016/j.cscm.2021.e00833
Ziane, S., Khelifa, M. R., & Mezhoud, S. (2020). A study of the durability of concrete reinforced with hemp fibers exposed to external Sulfatic attack. Civil and Environmental Engineering Reports, 30(2). doi: 10.2478/ceer-2020-0025
Copyright (c) 2025 Journal of Engineering and Technological Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.