Volcanoes Segmentation at the Western Sunda Arc based on Satellite-derived Geological Lineaments and Land Surface Temperatures
Downloads
The Western Sunda Arc is an active tectonic zone formed by the subduction of the Indo-Australian Plate beneath the Eurasian Plate. The tectonic zone hosted for 83 active volcanoes, including Mts. Sinabung, Krakatau, Tangkuban Parahu, Merapi, and Semeru. The dense volcano concentration and high volcanic activity cause complexity in monitoring and observation processes. Segmenting volcanoes by location and tectonic setting is necessary to simplify the disaster monitoring and enhance mitigation efforts through focused observation areas. This study focuses on the segmentation of the volcanoes distributed at the Sunda Arc in Indonesia by analyzing the satellite-derived geological lineaments and land surface temperatures. The Sunda Arc is a complex volcanic chain that spans through Sumatra and Java Islands and lies in an active tectonic region. Remote sensing data and advanced geospatial techniques were used to examine geological lineament patterns and surface temperatures along the volcanic arc and the results were validated through fieldwork. Moreover, Shuttle Radar Topography Mission (SRTM) and Landsat 8 OLI/TIRS imagery were applied to achieve accurate lineament extraction and surface temperature anomaly detection. Lineament density was also computed through the modified Segment Tracing Algorithm (mSTA) to identify the fault zones and structural discontinuities in order to ensure better regional geological understanding. Subsequently, land surface temperature analysis was used to classify thermal anomalies and this led to the differentiation of natural volcanic sources from ground surfaces. These parameters were integrated to segment the volcanoes of the Sunda Arc into nine zones. Each zone was presented by average lineament density from 207.83 km/km2 to 166.06 km/km2, land surface temperature from 23.36 °C to 28.65 °C, angle of subduction slab from 22.871° to 38.007°, and lineament strikes from N 330° E to N 260° E. The zones were later discussed relative to the gradient of the Sunda Arc subduction slab as a form of contribution to the existing knowledge on geothermal dynamics, tectonic processes, and volcanic hazards beyond the region.
Ahmadi, H., & Pekkan, E. (2021). Fault-Based Geological Lineaments Extraction Using Remote Sensing and GIS—A Review. Geosciences, 11(5), 183. https://doi.org/10.3390/geosciences11050183
Alif, S. M., Sauri, M. S., & Perdana, R. S. (2021). ). Changes in the Subduction Rate of the Indo-Australian Plate beneath the Sundaland Plate due to the 2016 Indian Ocean Earthquake. Jurnal Geosains dan Teknologi, 4(3), 159–167. (Text in Indonesian). https://doi.org/10.14710/jgt.4.3.2021.159-167
Aulia, A. B., Saepuloh, A., Ulitha, D. T., Widiatmoko, W., & Pradana, A. (2020). The Application of Geologic Lineament Extracted From Dual-Orbit SAR Images for Fluid Flow Path Detection and Characterization in Geothermal System. IOP Conference Series: Earth and Environmental Science, 417, 012013. https://doi.org/10.1088/1755-1315/417/1/012013
Bermudez, W. M. (1993). The interrelationships between volcanic and seismic activity to subduction-related tectonics in Western Nicaragua. Journal of the Geological Society of Japan, 99, 185–194. https://doi.org/10.5575/geosoc.99.185
Carneiro De Souza Barros, R., & Rolim Da Paz, A. (2024). Effects of Spatial Resolution on Topographic Representations and Drainage Networks Derived from LiDAR Digital Terrain Model. Revista Brasileira de Geografia Física, 17(5), 3794–3808. https://doi.org/10.26848/rbgf.v17.5.p3794-3808
Darman, H., & Sidi, F. H. (2021). An outline of the geology of Indonesia. Indonesian Association of Geologists.
Data Dasar Gunung Api Indonesia. (2011). Kementrian Energi dan Sumber Daya Mineral.
Diament, M., Harjono, H., Karta, K., Deplus, C., Dahrin, D., Zen, Jr., M. T., Gérard, M., Lassal, O., Martin, A., & Malod, J. (1992). Mentawai fault zone off Sumatra: A new key to the geodynamics of western Indonesia. Geology, 20(3), 259. https://doi.org/10.1130/0091-7613(1992)020<0259:MFZOSA>2.3.CO;2
Haeruddin, Saepuloh, A., Heriawan, M. N., & Kubo, T. (2016). Identification of linear features at geothermal field based on Segment Tracing Algorithm (STA) of the ALOS PALSAR data. IOP Conference Series: Earth and Environmental Science, 42, 012003. https://doi.org/10.1088/1755-1315/42/1/012003
Hall, R. (2002). Cenozoic geological and plate tectonic evolution of SE Asia and the SW Paci®c: Computer-based reconstructions, model and animations. Journal of Asian Earth Sciences, 20(4), 353–434. https://doi.org/10.1016/S1367-9120(01)00069-4
Hall, R. (2009). Indonesia, Geology. In R. Gillespie & D. Clague (Eds.), Encyclopedia of Islands (pp. 454–460). University of California Press. https://doi.org/10.1525/9780520943728-104
Hall, R. (2012). Late Jurassic–Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics, 570–571, 1–41. https://doi.org/10.1016/j.tecto.2012.04.021
Handayani, L., & Harjono, H. (2008). Tectonic Evolution of the Forearc Region of the Sunda Strait and Its Relationship with the Sumatra Fault Zone. Jurnal RISET Geologi dan Pertambangan, 18(2), 31. (Text in Indonesian). https://doi.org/10.14203/risetgeotam2008.v18.14
Harjono, H. (2017). Seismotectonics of the Sunda Arc. (LIPI Press, Ed.; 1st printing). LIPI Press.
Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., & Smoczyk, G. M. (2018). Slab2, a comprehensive subduction zone geometry model. Science, 362(6410), 58–61. https://doi.org/10.1126/science.aat4723
Heriawan, M. N., Syafi’i, A. A., Saepuloh, A., Kubo, T., & Koike, K. (2021). Detection of Near-Surface Permeable Zones Based on Spatial Correlation Between Radon Gas Concentration and DTM-Derived Lineament Density. Natural Resources Research, 30(4), 2989–3015. https://doi.org/10.1007/s11053-020-09718-z
Hermawan, D., & Rezky, Y. (2011). Delineasi Daerah Prospek Panas Bumi Berdasarkan Analisis Kelurusan Citra Landsat Di Candi Umbul - Telomoyo, Provinsi Jawa Tengah. Buletin Sumber Daya Geologi, 6(1), 1–10. https://doi.org/10.47599/bsdg.v6i1.92
Hulley, G. C., & Hook, S. J. (2011). Generating Consistent Land Surface Temperature and Emissivity Products Between ASTER and MODIS Data for Earth Science Research. IEEE Transactions on Geoscience and Remote Sensing, 49(4), 1304–1315. https://doi.org/10.1109/TGRS.2010.2063034
Iguchi, M., Surono, Nishimura, T., Hendrasto, M., Rosadi, U., Ohkura, T., Triastuty, H., Basuki, A., Loeqman, A., Maryanto, S., Ishihara, K., Yoshimoto, M., Nakada, S., & Hokanishi, N.. (2012). Methods for Eruption Prediction and Hazard Evaluation at Indonesian Volcanoes. Journal of Disaster Research, 7(1), 26–36. https://doi.org/10.20965/jdr.2012.p0026
Junursyah, G. M. L. (2017). Interpretation of Geological Structures in the Gunung Batu Lembang Area Based on Correlation of Surface Data, Resistivity, and Geomagnetic Measurements. Journal of Geology and Mineral Resources, 18(3), 171–182.(Text in Indonesian)
Koike, K., Nagano S, & Ohmi M. (n.d.). Lineament analysis of satellite images using a Segment Tracing Algorithm (STA). Computers & Geosciences, 21(9), 1091–1104. https://doi.org/10.1016/0098-3004(95)00042-7
Liu, M., & Gao, H. (2023). Role of subduction dynamics on the unevenly distributed volcanism at the Middle American subduction system. Scientific Reports, 13(1), 14697. https://doi.org/10.1038/s41598-023-41740-y
Lukiawan, R. (2019). Standards for Geometric Correction of Medium-Resolution Satellite Imagery and Their Benefits for Users. Jurnal Standardisasi, 21(1), 45–54. (Text in Indonesian)
Mulyana, B. (2006). Tectonic Extension of the Sunda Strait. Bulletin of Scientific Contribution, 4(1), 137–145. (Text in Indonesian)
Occorsio, D., Ramella, G., & Themistoclakis, W. (2023). An Open Image Resizing Framework for Remote Sensing Applications and Beyond. Remote Sensing, 15(16), 4039. https://doi.org/10.3390/rs15164039
Palanunu, T. T., Emi Sukiyah, & Agus Didit. (2020). Analysis of Lineament Density for Estimating Permeability Zones in the Gunung Patuha Area. In Bahasa Indonesia. Padjajaran Geoscience Journal, 4(2), 393–400.
Prabowo, A. (2017). Integration of Remote Sensing Data from Landsat 8 and SRTM for Identification of Dome Landforms in Kulonprogo. Angkasa: Jurnal Ilmiah Bidang Teknologi, 9(2), 67. (Text in Indonesian) https://doi.org/10.28989/angkasa.v9i2.185
Pradipta, R. A., Saepuloh, A., & Suryantini. (2016). Geology Structure Identification based on Polarimetric SAR (PolSAR) Data and Field Based Observation at Ciwidey Geothermal Field. IOP Conference Series: Earth and Environmental Science, 42, 012008. https://doi.org/10.1088/1755-1315/42/1/012008
Pratomo, I. (2006). Classification of Active Volcanoes in Indonesia: Case Studies from Several Historical Volcanic Eruptions. Jurnal Geologi Indonesia, 1(4), 209–227.
Ravand, H., & Baghaei, P. (2016). Partial Least Squares Structural Equation Modeling with R. Practical Assessment. Research & Evaluation, 21(11). Available online: http://pareonline.net/getvn.asp?v=21&n=11.
Rickard, M. J. (1972). Fault Classification: Discussion. Geological Society of America Bulletin, 83(8), 2545–2546. https://doi.org/10.1130/0016-7606(1972)83[2545:FCD]2.0.CO;2.
Ridwan, M. A., Radzi, N. A. M., Ahmad, W. S. H. M. W., Mustafa, I. S., Din, N. M., Jalil, Y. E., Isa, A. M., Othman, N. S., & Zaki, W. M. D. W. (2018). Applications of Landsat-8 Data: A Survey. International Journal of Engineering & Technology, 7(4.35), 436. https://doi.org/10.14419/ijet.v7i4.35.22858
Saepuloh, A., Haeruddin, H., Heriawan, M. N., Kubo, T., Koike, K., & Malik, D. (2018). Application of lineament density extracted from dual orbit of synthetic aperture radar (SAR) images to detecting fluids paths in the Wayang Windu geothermal field (West Java, Indonesia). Geothermics, 72, 145–155. https://doi.org/10.1016/j.geothermics.2017.11.010
Saepuloh, A., Saputro, R. H., Heriawan, M. N., & Malik, D. (2021). Integration of Thermal Infrared and Synthetic Aperture Radar Images to Identify Geothermal Steam Spots Under Thick Vegetation Cover. Natural Resources Research, 30(1), 245–258. https://doi.org/10.1007/s11053-020-09754-9
Saepuloh, A., Urai, M., Aisyah, N., Sunarta, Widiwijayanti, C., Subandriyo, & Jousset, P. (2013). Interpretation of ground surface changes prior to the 2010 large eruption of Merapi volcano using ALOS/PALSAR, ASTER TIR and gas emission data. Journal of Volcanology and Geothermal Research, 261, 130–143. https://doi.org/10.1016/j.jvolgeores.2013.05.001
Schminke, H.-U. (2004). Volcanism. Springer-Verlag Berlin Heidelberg New York.
Siombone, S. H. (2022). Analisis Suhu Permukaan Dan Kondisi Geomorfologi Kawasan Geotermal Tehoru Menggunakan Landsat-8 Dan Dem. JGE (Jurnal Geofisika Eksplorasi), 8(3), 210–224. https://doi.org/10.23960/jge.v8i3.243
Stern, R. J. (2002). Subduction Zones. Reviews of Geophysics, 40(4). https://doi.org/10.1029/2001RG000108
Sulyantara, D. H., Siwi, S. E., Prabowo, Y., & Brahmantara, R. P. (2018). Algoritma Haze Detection Dengan Menggunakan Haze Index Pada Citra Spot 6/7. Haze Detection Algorithm Using Haze Index on Spot 6/7 Imagery. 15(2), 93-99. Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital, 15(2), 93–100. https://doi.org/10.30536/inderaja.v15i2.3344
Venzke, E. (2024). Global Volcanism Program, 2024. Volcanoes of the World. Smithsonian Scientists. https://doi.org/10.5479/si.GVP.VOTW5-2023.5.1
Yang, L., Meng, X., & Zhang, X. (2011). SRTM DEM and its application advances. International Journal of Remote Sensing, 32(14), 3875–3896. https://doi.org/10.1080/01431161003786016
Zaennudin, A. (2010). The characteristic of eruption of Indonesian active volcanoes in the last four decades. Jurnal Lingkungan Dan Bencana Geologi, 1(2), 113–129.
Zahratunnisa, Saepuloh, A., Kriswati, E., & Basuki, A. (2023). Application of modified Segment Tracing Algorithm (mSTA) Method to Identify Landslide Susceptibility Zones Around Mt. Sinabung, Indonesia. IOP Conference Series: Earth and Environmental Science, 1245(1), 012012. https://doi.org/10.1088/1755-1315/1245/1/012012
Copyright (c) 2025 Journal of Engineering and Technological Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.








