Optimizing Food Processing Efficiency: The Role of Forward Osmosis in Concentration

Downloads
This review comprehensively explores the application of Forward Osmosis technology in the food processing industry, focusing on its role in concentration processes. Amidst growing concerns over water scarcity, energy consumption, and environmental impact, Forward Osmosis emerges as a sustainable alternative to traditional methods, offering lower energy requirements and reduced environmental footprint. The paper delves into the theoretical foundations of Forward Osmosis, examining the osmotic process and the dynamics of semi-permeable membranes. It further investigates the technological implementations of Forward Osmosis in food processing, showcasing successful case studies and highlighting the technology performance advantages compared to other methods. Despite its potential, Forward Osmosis faces technical challenges, including membrane fouling and the need for efficient draw solution recovery mechanisms. Recent innovations in membrane and draw solution development are discussed, offering solutions to these hurdles and paving the way for more effective Forward Osmosis applications. The review also projects future directions and research needs to overcome existing limitations and fully harness Forward Osmosis capabilities. Through a critical analysis of current literature, this paper underscores Forward Osmosis transformative potential in making food processing more sustainable and efficient.
Abounahia, N., Ibrar, I., Kazwini, T., Altaee, A., Samal, A. K., Zaidi, S. J., & Hawari, A. H. (2023). Desalination by the forward osmosis: Advancement and challenges. Science of The Total Environment, 886, 163901. https://doi.org/10.1016/j.scitotenv.2023.163901
Agrawal, V., & Sarode, D. (2022). Water Recovery from Dairy Industry Waste Stream Whey using Forward Osmosis Technology: Evaluating the Effects of Different Draw Solutions. Water and Energy International, 65r(7), 22–30.
Akhtar, A., Singh, M., Subbiah, S., & Mohanty, K. (2021). Sugarcane juice concentration using a novel aquaporin hollow fiber forward osmosis membrane. Food and Bioproducts Processing, 126, 195–206. https://doi.org/10.1016/j.fbp.2021.01.007
Alnaizy, R., Aidan, A., & Qasim, M. (2013a). Copper sulfate as draw solute in forward osmosis desalination. Journal of Environmental Chemical Engineering, 1(3), 424–430. https://doi.org/10.1016/j.jece.2013.06.005
Alnaizy, R., Aidan, A., & Qasim, M. (2013b). Draw solute recovery by metathesis precipitation in forward osmosis desalination. Desalination and Water Treatment, 51(28–30), 5516–5525. https://doi.org/10.1080/19443994.2013.770238
Alonso-Vázquez, P., Valle, C., Sánchez-Arévalo, C., Cuartas-Uribe, B.-E., Vincent-Vela, M.-C., Bes-Piá, A., & Álvarez-Blanco, S. (2024). Separation of phenolic compounds from canned mandarin production wastewater by ultrafiltration and nanofiltration. Journal of Water Process Engineering, 59, 105041. https://doi.org/10.1016/j.jwpe.2024.105041
Ambros, S., Dombrowski, J., Boettger, D., & Kulozik, U. (2019). The Concept of Microwave Foam Drying Under Vacuum: A Gentle Preservation Method for Sensitive Biological Material. Journal of Food Science, 84(7), 1682–1691. https://doi.org/10.1111/1750-3841.14698
An, X., Hu, Y., Wang, N., Zhou, Z., & Liu, Z. (2019). Continuous juice concentration by integrating forward osmosis with membrane distillation using potassium sorbate preservative as a draw solute. Journal of Membrane Science, 573, 192–199. https://doi.org/10.1016/j.memsci.2018.12.010
Anari, Z., Mai, C., Sengupta, A., Howard, L., Brownmiller, C., & Wickramasinghe, S. R. (2019). Combined Osmotic and Membrane Distillation for Concentration of Anthocyanin from Muscadine Pomace. Journal of Food Science, 84(8), 2199–2208. https://doi.org/10.1111/1750-3841.14717
Ang, W. L., Mohammad, A. W., Johnson, D., & Hilal, N. (2020). Unlocking the application potential of forward osmosis through integrated/hybrid process. Science of The Total Environment, 706, 136047. https://doi.org/10.1016/j.scitotenv.2019.136047
Anteneh, W., & Sahu, O. P. (2014). Natural Coagulant for the Treatment of Food Industry Wastewater. International Letters of Natural Sciences, 9, 27–35. https://doi.org/10.18052/www.scipress.com/ilns.9.27
Babu, B. R., Rastogi, N. K., & Raghavarao, K. S. M. S. (2006). Effect of process parameters on transmembrane flux during direct osmosis. Journal of Membrane Science, 280(1–2), 185–194. https://doi.org/10.1016/j.memsci.2006.01.018
Bardhan, A., Subbiah, S., & Mohanty, K. (2023a). Optimisation of multi-component inorganic salt composition as draw solute for preparation of concentrated tea extract using forward osmosis process. Food and Bioproducts Processing, 138, 126–138. https://doi.org/10.1016/j.fbp.2023.01.007
Bardhan, A., Subbiah, S., & Mohanty, K. (2023b). Optimisation of multi-component inorganic salt composition as draw solute for preparation of concentrated tea extract using forward osmosis process. Food and Bioproducts Processing, 138, 126–138. https://doi.org/10.1016/j.fbp.2023.01.007
Beldie, A. A., & Moraru, C. I. (2021). Forward osmosis concentration of milk: Product quality and processing considerations. Journal of Dairy Science, 104(7), 7522–7533. https://doi.org/10.3168/jds.2020-20019
Bendoy, A. P., Zeweldi, H. G., Park, M. J., Shon, H. K., Kim, H., Chung, W. J., & Nisola, G. M. (2022). Thermo-responsive hydrogel with deep eutectic mixture co-monomer as drawing agent for forward osmosis. Desalination, 542. https://doi.org/10.1016/j.desal.2022.116067
Bernacka, E., Jaroszek, H., Turek, M., Dydo, P., Czechowicz, D., & Mitko, K. (2022). Application of Waste Glycerol as a Draw Solution for Forward Osmosis. Membranes, 12(1). https://doi.org/10.3390/membranes12010044
Berthelot, U., Piché, S. R., Brisson, G., & Doyen, A. (2024). Exploring the use of ultrafiltration-diafiltration for the concentration and purification of mealworm proteins. Future Foods, 9, 100382. https://doi.org/10.1016/j.fufo.2024.100382
Bidaki, A., Mousavi, S. M., Kiani, S., & Hosseini, F. (2023). Preparation and characterization of forward osmosis cellulose acetate butyrate/ OH ‐functionalized multiwalled carbon nanotube membrane for the concentration of bitter orange juice. Journal of Food Process Engineering, 46(3). https://doi.org/10.1111/jfpe.14271
Blais, H. N., Schroën, K., & Tobin, J. (2023). Concentration of skim milk by forward osmosis using delactosed permeate as an innovative draw solution. International Dairy Journal, 137, 105510. https://doi.org/10.1016/j.idairyj.2022.105510
Blandin, G., Ferrari, F., Lesage, G., Le-Clech, P., Héran, M., & Martinez-Lladó, X. (2020). Forward Osmosis as Concentration Process: Review of Opportunities and Challenges. Membranes, 10(10), 284. https://doi.org/10.3390/membranes10100284
Cao, X., Zhang, P., Xian, Y., Zhang, Y., Muratkhan, M., Youravong, W., Li, S., & Li, Z. (2024). Nonthermal concentration of skimmed goat milk by forward osmosis: The insights into process performance and product quality. Chemical Engineering Research and Design, 204, 450–460. https://doi.org/10.1016/j.cherd.2024.03.009
Castro-Muñoz, R. (2019). Pervaporation-based membrane processes for the production of non-alcoholic beverages. Journal of Food Science and Technology, 56(5), 2333–2344. https://doi.org/10.1007/s13197-019-03751-4
Castro-Muñoz, R. (2024). Nanofiltration-Assisted Concentration Processes of Phenolic Fractions and Carotenoids from Natural Food Matrices. Separations, 11(2), 64. https://doi.org/10.3390/separations11020064
Chandran, A. M., Tayal, E., & Mural, P. K. S. (2022). Polycaprolactone-blended cellulose acetate thin-film composite membrane for dairy waste treatment using forward osmosis. Environmental Science and Pollution Research, 29(57), 86418–86426. https://doi.org/10.1007/s11356-022-20813-x
Chanukya, B. S., & Rastogi, N. K. (2016). A Comparison of Thermal Processing, Freeze Drying and Forward Osmosis for the Downstream Processing of Anthocyanin from Rose Petals. Journal of Food Processing and Preservation, 40(6), 1289–1296. https://doi.org/10.1111/jfpp.12714
Chekli, L., Phuntsho, S., Kim, J. E., Kim, J., Choi, J. Y., Choi, J.-S., Kim, S., Kim, J. H., Hong, S., Sohn, J., & Shon, H. K. (2016). A comprehensive review of hybrid forward osmosis systems: Performance, applications and future prospects. Journal of Membrane Science, 497, 430–449. https://doi.org/10.1016/j.memsci.2015.09.041
Chen, G. Q., Gras, S. L., & Kentish, S. E. (2020). The application of forward osmosis to dairy processing. Separation and Purification Technology, 246, 116900. https://doi.org/10.1016/j.seppur.2020.116900
Cheng, J., Wang, Q., & Yu, J. (2022). Life cycle assessment of concentrated apple juice production in China: Mitigation options to reduce the environmental burden. Sustainable Production and Consumption, 32, 15–26. https://doi.org/10.1016/j.spc.2022.04.006
Chiampo, F. (2023). Ultrafiltration to Increase the Consistency of Fruit Pulps: The Role of Permeate Flux. ChemEngineering, 8(1), 3. https://doi.org/10.3390/chemengineering8010003
Chintha, P., Giri, N., Thulasimani, K., Sajeev, M. S., & Safiya, S. (2022). Development of low‐fat and anthocyanin‐rich purple sweet potato vacuum fried chips. Journal of Food Science, 87(7), 2894–2907. https://doi.org/10.1111/1750-3841.16185
Chu, H., Zhang, Z., Zhong, H., Yang, K., Sun, P., Liao, X., & Cai, M. (2022). Athermal Concentration of Blueberry Juice by Forward Osmosis: Food Additives as Draw Solution. Membranes, 12(8), 808. https://doi.org/10.3390/membranes12080808
Cokgezme, O. F., Sabanci, S., Cevik, M., Yildiz, H., & Icier, F. (2017). Performance analyses for evaporation of pomegranate juice in ohmic heating assisted vacuum system. Journal of Food Engineering, 207, 1–9. https://doi.org/10.1016/j.jfoodeng.2017.03.015
Conidi, C., Castro-Muñoz, R., & Cassano, A. (2020). Membrane-based operations in the fruit juice processing industry: A review. In Beverages (Vol. 6, Issue 1, pp. 1–39). MDPI AG. https://doi.org/10.3390/beverages6010018
Dantas, A., Orellana‐Palma, P., Kumar, D., Hernandez, E., & Prudencio, E. S. (2022). Block freeze concentration by centrifugation and vacuum increases the content of lactose‐free milk macronutrients. Journal of Food Science, 87(12), 5317–5329. https://doi.org/10.1111/1750-3841.16383
Demircan, B., Velioglu, Y. S., & Giuffrè, A. M. (2024). Comparison of different drying methods for bergamot peel: Chemical and physicochemical properties. Journal of Food Science, 89(3), 1498–1516. https://doi.org/10.1111/1750-3841.16944
Ding, T., & Achten, W. M. J. (2022). Coupling agent-based modeling with territorial LCA to support agricultural land-use planning. Journal of Cleaner Production, 380. https://doi.org/10.1016/j.jclepro.2022.134914
Ding, Z., Qin, F. G. F., Yuan, J., Huang, S., Jiang, R., & Shao, Y. (2019). Concentration of apple juice with an intelligent freeze concentrator. Journal of Food Engineering, 256, 61–72. https://doi.org/10.1016/j.jfoodeng.2019.03.018
Doan, N. T. T., Lai, Q. D., Nguyen, H. D., & Nabetani, H. (2023). Enrichment of lycopene in watermelon juice by ultrafiltration: technical assessment and fouling analysis. International Journal of Food Science and Technology, 58(12), 6285–6295. https://doi.org/10.1111/ijfs.16732
Farahbakhsh, J., Golgoli, M., Khiadani, M., Najafi, M., Suwaileh, W., Razmjou, A., & Zargar, M. (2024). Recent advances in surface tailoring of thin film forward osmosis membranes: A review. Chemosphere, 346, 140493. https://doi.org/10.1016/j.chemosphere.2023.140493
Farman, A. A., Irfan, M., Amin, N. U., Jahan, Z., Song, X., Jiang, H., & Gul, S. (2022). Evaluation of sodium acetate and glucose as minor additives with calcium chloride as optimum mixed draw solutes for fruit juice concentration via forward osmosis. Korean Journal of Chemical Engineering, 39(11), 3102–3108. https://doi.org/10.1007/s11814-022-1228-7
Fikri, S., Lessard, M.-H., Perreault, V., Doyen, A., & Labrie, S. (2023). Candida krusei is the major contaminant of ultrafiltration and reverse osmosis membranes used for cranberry juice production. Food Microbiology, 109, 104146. https://doi.org/10.1016/j.fm.2022.104146
Galván-Ángeles, E., Díaz-Ovalle, C. O., González-Alatorre, G., Castrejón-González, E. O., & Vázquez-Román, R. (2015). Effect of thermo-compression on the design and performance of falling-film multi-effect evaporator. Food and Bioproducts Processing, 96, 65–77. https://doi.org/10.1016/j.fbp.2015.07.004
Gao, C., Zhao, M., Zeng, S., Pei, J., Wang, X., Li, C., Zhang, W., & Liu, Z. (2025). Synthesis of sandwich structure forward osmosis membrane with calcium-carboxyl modified polyamide and tannic acid-Fe3+ interlayer and its application in coconut water concentration. Separation and Purification Technology, 352. https://doi.org/10.1016/j.seppur.2024.128223
Garcia-Castello, E. M., McCutcheon, J. R., & Elimelech, M. (2009). Performance evaluation of sucrose concentration using forward osmosis. Journal of Membrane Science, 338(1–2), 61–66. https://doi.org/10.1016/j.memsci.2009.04.011
Giagnorio, M., Casasso, A., & Tiraferri, A. (2021). Environmental sustainability of forward osmosis: The role of draw solute and its management. Environment International, 152, 106498. https://doi.org/10.1016/j.envint.2021.106498
Goli Buta, J., Goli, J., & Sahu, O. (2016). OPTIMIZATION OF SUCROSE LOSS FROM SUGAR INDUSTRY Optimization of sucrose loss from sugar industry Section OPTIMIZATION OF SUCROSE LOSS FROM SUGAR INDUSTRY. Chem. Bull, 5(10), 441–449. https://doi.org/10.17628/ECB.2016.5.441
Gosmann, L., Geitner, C., & Wieler, N. (2022). Data-driven forward osmosis model development using multiple linear regression and artificial neural networks. Computers and Chemical Engineering, 165. https://doi.org/10.1016/j.compchemeng.2022.107933
Gu, X., Suzuki, T., & Miyawaki, O. (2006). Limiting Partition Coefficient in Progressive Freeze-concentration. Journal of Food Science, 70(9), E546–E551. https://doi.org/10.1111/j.1365-2621.2005.tb08317.x
Gulied, M., Logade, K., Mutahir, H., Shaftah, S., Salauddin, S., Hameed, A., Zavahir, S., Elmakki, T., Shon, H. K., Hong, S., Park, H., & Han,
D. S. (2023a). A review of membrane-based dewatering technology for the concentration of liquid foods. In Journal of Environmental Chemical Engineering (Vol. 11, Issue 5). Elsevier Ltd. https://doi.org/10.1016/j.jece.2023.110583
Gulied, M., Logade, K., Mutahir, H., Shaftah, S., Salauddin, S., Hameed, A., Zavahir, S., Elmakki, T., Shon, H. K., Hong, S., Park, H., & Han,
D. S. (2023b). A review of membrane-based dewatering technology for the concentration of liquid foods. Journal of Environmental Chemical Engineering, 11(5), 110583. https://doi.org/10.1016/j.jece.2023.110583
Guo, P., Abdollahpour, A., Jazbizadeh, M. H., & Semiromi, D. T. (2023). The amount of improvement and therapeutic effect of sports health by increasing the viscosity of peach juice through reverse osmosis and polymer membrane. Food Bioscience, 56, 103330. https://doi.org/10.1016/j.fbio.2023.103330
Hafiz, M., Hassanein, A., Talhami, M., AL-Ejji, M., Hassan, M. K., & Hawari, A. H. (2022). Magnetic nanoparticles draw solution for forward osmosis: Current status and future challenges in wastewater treatment. Journal of Environmental Chemical Engineering, 10(6), 108955. https://doi.org/10.1016/j.jece.2022.108955
Hancock, N. T., Black, N. D., & Cath, T. Y. (2012). A comparative life cycle assessment of hybrid osmotic dilution desalination and established seawater desalination and wastewater reclamation processes. Water Research, 46(4), 1145–1154. https://doi.org/10.1016/j.watres.2011.12.004
Hancock, N. T., & Cath, T. Y. (2009). Solute Coupled Diffusion in Osmotically Driven Membrane Processes. Environmental Science & Technology, 43(17), 6769–6775. https://doi.org/10.1021/es901132x
Hartanto, Y., Yun, S., Jin, B., & Dai, S. (2015). Functionalized thermo-responsive microgels for high performance forward osmosis desalination. Water Research, 70, 385–393. https://doi.org/10.1016/j.watres.2014.12.023
Hassanein, A., Hafiz, M. A., Hassan, M. K., Ba-Abbad, M. M., AL-Ejji, M., Alfahel, R., Mahmoud, K. A., Talhami, M., & Hawari, A. H. (2023). Developing sustainable draw solute for forward osmosis process using poly(amidoamine) dendrimer coated magnetic nanoparticles. Desalination, 564. https://doi.org/10.1016/j.desal.2023.116800
Heinonen, J., Farahmandazad, H., Vuorinen, A., Kallio, H., Yang, B., & Sainio, T. (2016). Extraction and purification of anthocyanins from purple-fleshed potato. Food and Bioproducts Processing, 99, 136–146. https://doi.org/10.1016/j.fbp.2016.05.004
Ibraheem, B. M., Aani, S. Al, Alsarayreh, A. A., Alsalhy, Q. F., & Salih, I. K. (2023a). Forward Osmosis Membrane: Review of Fabrication, Modification, Challenges and Potential. In Membranes (Vol. 13, Issue 4). MDPI. https://doi.org/10.3390/membranes13040379
Ibraheem, B. M., Aani, S. Al, Alsarayreh, A. A., Alsalhy, Q. F., & Salih, I. K. (2023b). Forward Osmosis Membrane: Review of Fabrication, Modification, Challenges and Potential. Membranes, 13(4), 379. https://doi.org/10.3390/membranes13040379
Ibrahim, G. P. S. G. P. S., Isloor, A. M., & Yuliwati, E. (2018). A review: Desalination by forward osmosis. In Current Trends and Future Developments on (Bio-) Membranes: Membrane Desalination Systems: The Next Generation (pp. 199–214). Elsevier. https://doi.org/10.1016/B978-0-12-813551-8.00008-5
Icier, F., Yildiz, H., Sabanci, S., Cevik, M., & Cokgezme, O. F. (2017). Ohmic heating assisted vacuum evaporation of pomegranate juice: Electrical conductivity changes. Innovative Food Science & Emerging Technologies, 39, 241–246. https://doi.org/10.1016/j.ifset.2016.12.014
Jalab, R., Awad, A. M., Nasser, M. S., Hussein, I. A., Almomani, F., Minier-Matar, J., & Adham, S. (2022). Investigation of thin-film composite hollow fiber forward osmosis membrane for osmotic concentration: A pilot-scale study. Korean Journal of Chemical Engineering, 39(1), 178–188. https://doi.org/10.1007/s11814-021-0935-9
Jawad, J., Hawari, A. H., & Zaidi, S. (2020). Modeling of forward osmosis process using artificial neural networks (ANN) to predict the permeate flux. Desalination, 484. https://doi.org/10.1016/j.desal.2020.114427
Jia, F., Cao, X., Ge, L., Zhang, J., Guo, Y., Li, S., & Li, Z. (2024). Sustainable apple juice concentration: A fusion of pasteurization and membrane distillation. Chemical Engineering Research and Design, 208, 753–764. https://doi.org/10.1016/j.cherd.2024.07.044
Johnson, D. J., Suwaileh, W. A., Mohammed, A. W., & Hilal, N. (2018). Osmotic’s potential: An overview of draw solutes for forward osmosis. Desalination, 434, 100–120. https://doi.org/10.1016/j.desal.2017.09.017
Ju, C., Park, C., Kim, T., Kang, S., & Kang, H. (2019). Thermo-responsive draw solute for forward osmosis process; poly(ionic liquid) having lower critical solution temperature characteristics. RSC Advances, 9(51), 29493–29501. https://doi.org/10.1039/C9RA04020J
Julian, H., Khoiruddin, K., Sutrisna, P. D., Machmudah, S., & Wenten, I. G. (2022). Latest development in low-pressure osmotic-based membrane separation for liquid food concentration: a review. Current Opinion in Food Science, 48. https://doi.org/10.1016/j.cofs.2022.100947
Khan, B. E., Mahmood, A., Zaman, M., & Lee, K. H. (2024). Zinc sulfate as a draw solute in forward osmosis and its regeneration by reagent precipitation. Desalination, 571. https://doi.org/10.1016/j.desal.2023.117087
Khan, M. U., Hamid, K., Tolstorebrov, I., & Eikevik, T. M. (2024). A comprehensive investigation of the use of freeze concentration appro aches for the concentration of fish protein hydrolysates. Food Chemistry, 452, 139559. https://doi.org/10.1016/j.foodchem.2024.139559
Kim, D. I., Gwak, G., Zhan, M., & Hong, S. (2019). Sustainable dewatering of grapefruit juice through forward osmosis: Improving membrane performance, fouling control, and product quality. Journal of Membrane Science, 578, 53–60. https://doi.org/10.1016/j.memsci.2019.02.031
Kim, J. E., Phuntsho, S., Chekli, L., Hong, S., Ghaffour, N., Leiknes, T., Choi, J. Y., & Shon, H. K. (2017). Environmental and economic impacts of fertilizer drawn forward osmosis and nanofiltration hybrid system. Desalination, 416, 76–85. https://doi.org/10.1016/j.desal.2017.05.001
Kim, W.-J., Park, H. W., & Heldman, D. R. (2024). Clean-In-Place (CIP) wastewater management using nanofiltration (NF)-forward osmosis (FO)-direct contact membrane distillation (DCMD): Effects of draw salt. Food Research International, 178, 113939. https://doi.org/10.1016/j.foodres.2024.113939
Kumar, M., Grzelakowski, M., Zilles, J., Clark, M., & Meier, W. (2007). Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z. Proceedings of the National Academy of Sciences, 104(52), 20719–20724. https://doi.org/10.1073/pnas.0708762104
Lai, D. Q., Tagashira, N., Hagiwara, S., Nakajima, M., Kimura, T., & Nabetani, H. (2023). Technical assessment of nanofiltration process for concentration of cranberry juice and recovery of benzoic acid. International Journal of Food Science & Technology, 58(10), 5247–5256. https://doi.org/10.1111/ijfs.16626
Li, D., Zhang, X., Yao, J., Simon, G. P., & Wang, H. (2011). Stimuli-responsive polymer hydrogels as a new class of draw agent for forward osmosis desalination. Chemical Communications, 47(6), 1710. https://doi.org/10.1039/c0cc04701e
Li, X., Chou, S., Wang, R., Shi, L., Fang, W., Chaitra, G., Tang, C. Y., Torres, J., Hu, X., & Fane, A. G. (2015). Nature gives the best solution for desalination: Aquaporin-based hollow fiber composite membrane with superior performance. Journal of Membrane Science, 494, 68–77. https://doi.org/10.1016/j.memsci.2015.07.040
Li, Z., Wu, C., Huang, J., Zhou, R., & Jin, Y. (2021a). Membrane fouling behavior of forward osmosis for fruit juice concentration. Membranes, 11(8). https://doi.org/10.3390/membranes11080611
Li, Z., Wu, C., Huang, J., Zhou, R., & Jin, Y. (2021b). Membrane fouling behavior of forward osmosis for fruit juice concentration. Membranes, 11(8). https://doi.org/10.3390/membranes11080611
Li, Z., Xiao, S., Xiong, Q., Wu, C., Huang, J., Zhou, R., & Jin, Y. (2022). Assessment of highly concentrated pear juice production through single-run forward osmosis using sodium lactate as the draw solute. Journal of Food Engineering, 333, 111122. https://doi.org/10.1016/j.jfoodeng.2022.111122
Ling, M. M., & Chung, T. S. (2011). Desalination process using super hydrophilic nanoparticles via forward osmosis integrated with ultrafiltration regeneration. Desalination, 278(1–3), 194–202. https://doi.org/10.1016/j.desal.2011.05.019
Ma, S., Wu, X., Fan, L., & Xie, Z. (2024). Predicting water flux and reverse solute flux in forward osmosis processes using artificial neural networks (ANN) modelling with structural parameters. Separation and Purification Technology, 351. https://doi.org/10.1016/j.seppur.2024.128092
Ma, Z., Noor, I. I., Liu, L., Wang, X., Wang, Q., Wang, Z., Brendon, H., Wang, J., Gao, J., Liu, H., & Gao, X. (2024a). Optimal synergy between FO membrane and draw solute for high-efficient fruit juice concentration and simultaneous fruiter fertigation. Chemical Engineering Journal, 488, 150959. https://doi.org/10.1016/j.cej.2024.150959
Ma, Z., Noor, I. I., Liu, L., Wang, X., Wang, Q., Wang, Z., Brendon, H., Wang, J., Gao, J., Liu, H., & Gao, X. (2024b). Optimal synergy between FO membrane and draw solute for high-efficient fruit juice concentration and simultaneous fruiter fertigation. Chemical Engineering Journal, 488, 150959. https://doi.org/10.1016/j.cej.2024.150959
Ma, Z., Noor, I. I., Wang, X., Ren, Y., Wang, J., Wang, Q., Gao, J., Gao, X., & Liu, H. (2024). A comprehensive review on the recent advances in membrane-based processes for fruit juice concentration. Food and Bioproducts Processing, 145, 42–66. https://doi.org/10.1016/j.fbp.2024.02.010
Macedo y Ramírez, R. C., & Vélez Ruiz, J. F. (2021). Experimentation and modeling of convective heat transfer coefficient for evaporation of liquid foods in a pilot plant double effect. International Journal of Food Engineering, 17(5), 345–354. https://doi.org/10.1515/ijfe-2020-0174
Menchik, P., & Moraru, C. I. (2019a). Nonthermal concentration of liquid foods by a combination of reverse osmosis and forward osmosis. Acid whey: A case study. Journal of Food Engineering, 253, 40–48. https://doi.org/10.1016/j.jfoodeng.2019.02.015
Menchik, P., & Moraru, C. I. (2019b). Nonthermal concentration of liquid foods by a combination of reverse osmosis and forward osmosis. Acid whey: A case study. Journal of Food Engineering, 253, 40–48. https://doi.org/10.1016/j.jfoodeng.2019.02.015
Miyawaki, O., & Inakuma, T. (2021). Development of Progressive Freeze Concentration and Its Application: a Review. Food and Bioprocess Technology, 14(1), 39–51. https://doi.org/10.1007/s11947-020-02517-7
Mohammadifakhr, M., Grooth, J. de, Roesink, H. D. W., & Kemperman, A. J. B. (2020). Forward osmosis: A critical review. In Processes (Vol. 8, Issue 4). MDPI AG. https://doi.org/10.3390/PR8040404
Moon, J., & Kang, H. (2023). Anion Effect on Forward Osmosis Performance of Tetrabutylphosphonium-Based Draw Solute Having a Lower Critical Solution Temperature. Membranes, 13(2). https://doi.org/10.3390/membranes13020211
Moon, J., & Kang, H. (2024). Thermo-responsive tributyl-4-vinylbenzylphosphonium alkanesulfonate ionic liquid-based draw solute for forward osmosis. Journal of Industrial and Engineering Chemistry, 129, 413–423. https://doi.org/10.1016/j.jiec.2023.09.001
Nayak, C. A., & Rastogi, N. K. (2010). Comparison of osmotic membrane distillation and forward osmosis membrane processes for concentration of anthocyanin. Desalination and Water Treatment, 16(1–3), 134–145. https://doi.org/10.5004/dwt.2010.1084
Nijmeijer, K., Oymaci, P., Lubach, S., & Borneman, Z. (2022). Apple Juice, Manure and Whey Concentration with Forward Osmosis Using Electrospun Supported Thin-Film Composite Membranes. Membranes, 12(5). https://doi.org/10.3390/membranes12050456
Orme, C. J., & Wilson, A. D. (2015). 1-Cyclohexylpiperidine as a thermolytic draw solute for osmotically driven membrane processes. Desalination, 371, 126–133. https://doi.org/10.1016/j.desal.2015.05.024
Pei, J., Gao, S., Sarp, S., Wang, H., Chen, X., Yu, J., Yue, T., Youravong, W., & Li, Z. (2021). Emerging forward osmosis and membrane distillation for liquid food concentration: A review. Comprehensive Reviews in Food Science and Food Safety, 20(2), 1910–1936. https://doi.org/10.1111/1541-4337.12691
Pei, J., Pei, S., Wang, W., Li, S., Youravong, W., & Li, Z. (2020). Athermal forward osmosis process for the concentration of liquid egg white: Process performance and improved physicochemical property of protein. Food Chemistry, 312, 126032. https://doi.org/10.1016/j.foodchem.2019.126032
Ponnappan, S., Bahir, A. T., Sahu, O., & Thangavel, A. (2017). Saravanan Ponnappan, Arun Thangavel, Omprakash Sahu. Milling and Physical Characteristics of Pigmented Rice Varieties. International Journal of Food Chemistry, 1(1), 24–29. https://doi.org/10.11648/j.ijfc.20170101.15
Ponnappan, S., Thangavel, A., & Sahu, O. (2017). Anthocyanin, Lutein, Polyphenol Contents and Antioxidant Activity of Black, Red and White Pigmented Rice Varieties. Food Science and Nutrition Studies, 1(1), 43. https://doi.org/10.22158/fsns.v1n1p43
Prestes, A. A., Helm, C. V., Esmerino, E. A., Silva, R., da Cruz, A. G., & Prudencio, E. S. (2022). Freeze concentration techniques as alternative methods to thermal processing in dairy manufacturing: A review. Journal of Food Science, 87(2), 488–502. https://doi.org/10.1111/1750-3841.16027
Purwasasmita, M., Kurnia, D., Mandias, F. C., Khoiruddin, & Wenten, I. G. (2015). Beer dealcoholization using non-porous membrane distillation. Food and Bioproducts Processing, 94, 180–186. https://doi.org/10.1016/j.fbp.2015.03.001
Qasim, M., Mohammed, F., Aidan, A., & Darwish, N. A. (2017). Forward osmosis desalination using ferric sulfate draw solute. Desalination, 423, 12–20. https://doi.org/10.1016/j.desal.2017.08.019
Qin, F. G. F., Ding, Z., Peng, K., Yuan, J., Huang, S., Jiang, R., & Shao, Y. (2021). Freeze concentration of apple juice followed by centrifugation of ice packed bed. Journal of Food Engineering, 291, 110270. https://doi.org/10.1016/j.jfoodeng.2020.110270
Rai, P., Mehrotra, S., & Sharma, S. K. (2024). Potential of sensing interventions in the life cycle assessment of fruits and fruit juices. In Trends in Food Science and Technology (Vol. 151). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2024.104614
Ravichandran, R., & Ekambaram, N. (2018). Assessment of factors influencing the concentration of betacyanin from Opuntia ficus-indica using forward osmosis. Journal of Food Science and Technology, 55(7), 2361–2369. https://doi.org/10.1007/s13197-018-3149-3
Razmjou, A., Liu, Q., Simon, G. P., & Wang, H. (2013). Bifunctional Polymer Hydrogel Layers As Forward Osmosis Draw Agents for Continuous Production of Fresh Water Using Solar Energy. Environmental Science & Technology, 47(22), 13160–13166. https://doi.org/10.1021/es403266y
Ren, J., & McCutcheon, J. R. (2018). A new commercial biomimetic hollow fiber membrane for forward osmosis. Desalination, 442, 44–50. https://doi.org/10.1016/j.desal.2018.04.015
Rida, H., Peydecastaing, J., Takache, H., Ismail, A., & Pontalier, P.-Y. (2024). Concentration and desalting of Tetraselmis suecica crude extract by ultrafiltration. Desalination and Water Treatment, 317, 100209. https://doi.org/10.1016/j.dwt.2024.100209
Sabanci, S., & Icier, F. (2020). Rheological behavior of sour cherry juices concentrated by ohmic and conventional evaporation processes under vacuum. Journal of Food Processing and Preservation, 44(10). https://doi.org/10.1111/jfpp.14832
Sant’Anna, V., Gurak, P. D., Vargas, N. S. de, da Silva, M. K., Marczak, L. D. F., & Tessaro, I. C. (2016). Jaboticaba ( Myrciaria jaboticaba ) juice concentration by forward osmosis. Separation Science and Technology, 51(10), 1708–1715. https://doi.org/10.1080/01496395.2016.1168845
Sant’Anna, V., Marczak, L. D. F., & Tessaro, I. C. (2012a). Membrane concentration of liquid foods by forward osmosis: Process and quality view. Journal of Food Engineering, 111(3), 483–489. https://doi.org/10.1016/j.jfoodeng.2012.01.032
Sant’Anna, V., Marczak, L. D. F., & Tessaro, I. C. (2012b). Membrane concentration of liquid foods by forward osmosis: Process and quality view. Journal of Food Engineering, 111(3), 483–489. https://doi.org/10.1016/j.jfoodeng.2012.01.032
Saroglu, O., & Karadag, A. (2024). Multiple-effect evaporators in the food industry. In Evaporation Technology in Food Processing (pp. 57–83). Elsevier. https://doi.org/10.1016/B978-0-12-818764-7.00004-9
Shoorangiz, L., Karimi-Jashni, A., Azadi, F., & Zerafat, M. M. (2022). Water treatment by forward osmosis using novel D-Xylose coated magnetic nanoparticles as draw agent. Environmental Technology, 43(21), 3309–3318. https://doi.org/10.1080/09593330.2021.1921049
Simonič, M., & Pintarič, Z. N. (2021). Study of Acid Whey Fouling after Protein Isolation Using Nanofiltration. Membranes, 11(7), 492. https://doi.org/10.3390/membranes11070492
Singh, S. K., Sharma, C., & Maiti, A. (2021). A comprehensive review of standalone and hybrid forward osmosis for water treatment: Membranes and recovery strategies of draw solutions. In Journal of Environmental Chemical Engineering (Vol. 9, Issue 4). Elsevier Ltd. https://doi.org/10.1016/j.jece.2021.105473
Soares, R. M., Câmara, M. M., Feital, T., & Pinto, J. C. (2019). Digital twin for monitoring of industrial multi-effect evaporation. Processes, 7(8). https://doi.org/10.3390/PR7080537
Solanki, P., & Gupta, V. K. (2014). Manufacture of low lactose concentrated ultrafiltered-diafiltered retentate from buffalo milk and skim milk. Journal of Food Science and Technology, 51(2), 396–400. https://doi.org/10.1007/s13197-013-1142-4
Stone, M. L., Rae, C., Stewart, F. F., & Wilson, A. D. (2013). Switchable polarity solvents as draw solutes for forward osmosis. Desalination, 312, 124–129. https://doi.org/10.1016/j.desal.2012.07.034
Suwaileh, W. A., Johnson, D. J., Sarp, S., & Hilal, N. (2018). Advances in forward osmosis membranes: Altering the sub-layer structure via recent fabrication and chemical modification approaches. Desalination, 436, 176–201. https://doi.org/10.1016/j.desal.2018.01.035
Suwaileh, W., Pathak, N., Shon, H., & Hilal, N. (2020). Forward osmosis membranes and processes: A comprehensive review of research trends and future outlook. In Desalination (Vol. 485). Elsevier B.V. https://doi.org/10.1016/j.desal.2020.114455
Szczygiełda, M., Krajewska, M., Zheng, L., Nghiem, L. D., & Prochaska, K. (2021). Implementation of forward osmosis to concentrate alpha-ketoglutaric acid from fermentation broth: Performance and fouling analysis. Journal of Membrane Science, 637, 119593. https://doi.org/10.1016/j.memsci.2021.119593
tan2010. (n.d.).
Tang, B., Gao, S., Gui, C., Luo, Q., Wang, T., Huang, K., Huang, L., & Jiang, H. (2024). Osmotic pressure regulated sodium alginate-graphene oxide hydrogel as a draw agent in forward osmosis desalination. Desalination, 586. https://doi.org/10.1016/j.desal.2024.117863
Tavares, H. M., Tessaro, I. C., & Cardozo, N. S. M. (2022). Concentration of grape juice: Combined forward osmosis/evaporation versus conventional evaporation. Innovative Food Science & Emerging Technologies, 75, 102905. https://doi.org/10.1016/j.ifset.2021.102905
Tayel, A., Nasr, P., & Sewilam, H. (2020). Enhanced water flux using uncoated magnetic nanoparticles as a draw solution in forward osmosis desalination. DESALINATION AND WATER TREATMENT, 193, 169–176. https://doi.org/10.5004/dwt.2020.25827
Tchonkouang, R. D., Onyeaka, H., & Nkoutchou, H. (2024). Assessing the vulnerability of food supply chains to climate change-induced disruptions. In Science of the Total Environment (Vol. 920). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2024.171047
Terefe, N. S., Janakievski, F., Glagovskaia, O., & Stockmann, R. (2019). Forward Osmosis: An Emerging Non-thermal Concentration Technology for Liquid Foods. In Reference Module in Food Science. Elsevier. https://doi.org/10.1016/b978-0-08-100596-5.21871-4
Tiwari, A., & Sahu, O. (2017). Treatment of food-agro (sugar) industry wastewater with copper metal and salt: Chemical oxidation and electro-oxidation combined study in batch mode. Water Resources and Industry, 17, 19–25. https://doi.org/10.1016/j.wri.2016.12.001
Tobar‐Bolaños, G., Casas‐Forero, N., Orellana‐Palma, P., & Petzold, G. (2021). Blueberry juice: Bioactive compounds, health impact, and concentration technologies—A review. Journal of Food Science, 86(12), 5062–5077. https://doi.org/10.1111/1750-3841.15944
Trishitman, D., Negi, P. S., & Rastogi, N. K. (2021). Concentration of beetroot juice colorant (betalains) by forward osmosis and its comparison with thermal processing. LWT, 145, 111522. https://doi.org/10.1016/j.lwt.2021.111522
Trishitman, D., Negi, P. S., & Rastogi, N. K. (2023a). Concentration of pomegranate juice by forward osmosis or thermal evaporation and its shelf-life kinetic studies. Food Chemistry, 399, 133972. https://doi.org/10.1016/j.foodchem.2022.133972
Trishitman, D., Negi, P. S., & Rastogi, N. K. (2023b). Concentration of pomegranate juice by forward osmosis or thermal evaporation and its shelf-life kinetic studies. Food Chemistry, 399, 133972. https://doi.org/10.1016/j.foodchem.2022.133972
Valladares Linares, R., Li, Z., Yangali-Quintanilla, V., Ghaffour, N., Amy, G., Leiknes, T., & Vrouwenvelder, J. S. (2016). Life cycle cost of a hybrid forward osmosis – low pressure reverse osmosis system for seawater desalination and wastewater recovery. Water Research, 88, 225–234. https://doi.org/10.1016/j.watres.2015.10.017
Vinardell, S., Astals, S., Mata-Alvarez, J., & Dosta, J. (2020). Techno-economic analysis of combining forward osmosis-reverse osmosis and anaerobic membrane bioreactor technologies for municipal wastewater treatment and water production. Bioresource Technology, 297, 122395. https://doi.org/10.1016/j.biortech.2019.122395
Wang, H., Zhang, Y., Ren, S., Pei, J., & Li, Z. (2022). Athermal concentration of apple juice by forward osmosis: Process performance and membrane fouling propensity. Chemical Engineering Research and Design, 177, 569–577. https://doi.org/10.1016/j.cherd.2021.11.023
Wang, Y.-N., Wang, R., Li, W., & Tang, C. Y. (2017). Whey recovery using forward osmosis – Evaluating the factors limiting the flux performance. Journal of Membrane Science, 533, 179–189. https://doi.org/10.1016/j.memsci.2017.03.047
Wenten, I. G., Khoiruddin, K., Reynard, R., Lugito, G., & Julian, H. (2021). Advancement of forward osmosis (FO) membrane for fruit juice concentration. Journal of Food Engineering, 290, 110216. https://doi.org/10.1016/j.jfoodeng.2020.110216
Wu, T., Sakamoto, M., Inoue, N., Imahigashi, K., & Kamitani, Y. (2022). Effect of Functional Water on the Antioxidant Property of Concentrated Reconstituted Juice. Foods, 11(16). https://doi.org/10.3390/foods11162531
Xiao, F., Ge, H., Wang, Y., Bian, S., Tong, Y., Gao, C., & Zhu, G. (2022). Novel thin-film composite membrane with polydopamine-modified polyethylene support and tannic acid-Fe3+ interlayer for forward osmosis applications. Journal of Membrane Science, 642. https://doi.org/10.1016/j.memsci.2021.119976
Xu, Y., Zhu, Y., Chen, Z., Zhu, J., & Chen, G. (2022). A Comprehensive Review on Forward Osmosis Water Treatment: Recent Advances and Prospects of Membranes and Draw Solutes. In International Journal of Environmental Research and Public Health (Vol. 19, Issue 13). MDPI. https://doi.org/10.3390/ijerph19138215
Xu, Z., Wu, K., Luo, H., Wang, Q., Zhang, T. C., Chen, X., Rong, H., & Fang, Q. (2022). Electro-responsive semi-IPN hydrogel with enhanced responsive property for forward osmosis desalination. Journal of Applied Polymer Science, 139(7). https://doi.org/10.1002/app.51650
Yalamanchili, R., Rodriguez-Roda, I., Galizia, A., & Blandin, G. (2024). Can a forward osmosis-reverse osmosis hybrid system achieve 90 % wastewater recovery and desalination energy below 1 kWh/m3? A design and simulation study. Desalination, 585. https://doi.org/10.1016/j.desal.2024.117767
Yang, D. E., & Kang, H. (2022). Thermoresponsive Ionic Liquid with Different Cation–Anion Pairs as Draw Solutes in Forward Osmosis. Molecules, 27(24). https://doi.org/10.3390/molecules27248869
Yang, S., Lee, S., & Hong, S. (2021). Enhancing the applicability of forward osmosis membrane process utilizing food additives as draw solutes. Journal of Membrane Science, 638, 119705. https://doi.org/10.1016/j.memsci.2021.119705
Yip, N. Y., Tiraferri, A., Phillip, W. A., Schiffman, J. D., & Elimelech, M. (2010). High Performance Thin-Film Composite Forward Osmosis Membrane. Environmental Science & Technology, 44(10), 3812–3818. https://doi.org/10.1021/es1002555
Zhang, K., An, X., Bai, Y., Shen, C., Jiang, Y., & Hu, Y. (2021). Exploration of food preservatives as draw solutes in the forward osmosis process for juice concentration. Journal of Membrane Science, 635, 119495. https://doi.org/10.1016/j.memsci.2021.119495
Zhang, K., Li, F., Wu, Y., Feng, L., & Zhang, L. (2020). Construction of ionic thermo-responsive PNIPAM/γ-PGA/PEG hydrogel as a draw agent for enhanced forward-osmosis desalination. Desalination, 495. https://doi.org/10.1016/j.desal.2020.114667
Zhang, X., Ning, Z., Wang, D. K., & Diniz da Costa, J. C. (2013). A novel ethanol dehydration process by forward osmosis. Chemical Engineering Journal, 232, 397–404. https://doi.org/10.1016/j.cej.2013.07.106
Zhao, S., Zou, L., & Mulcahy, D. (2012). Brackish water desalination by a hybrid forward osmosis-nanofiltration system using divalent draw solute. Desalination, 284, 175–181. https://doi.org/10.1016/j.desal.2011.08.053
Zhao, Y., Liu, C., Deng, J., Zhang, P., Feng, S., & Chen, Y. (2024). Green and Sustainable Forward Osmosis Process for the Concentration of Apple Juice Using Sodium Lactate as Draw Solution. Membranes, 14(5). https://doi.org/10.3390/membranes14050106
Zhu, Z., Geng, Y., & Sun, D.-W. (2019). Effects of operation processes and conditions on enhancing performances of vacuum cooling of foods: A review. Trends in Food Science & Technology, 85, 67–77. https://doi.org/10.1016/j.tifs.2018.12.011
Zorić, Z., Pedisić, S., Kovačević, D. B., Ježek, D., & Dragović-Uzelac, V. (2016). Impact of packaging material and storage conditions on polyphenol stability, colour and sensory characteristics of freeze-dried sour cherry (prunus cerasus var. Marasca). Journal of Food Science and Technology, 53(2), 1247–1258. https://doi.org/10.1007/s13197-015-2097-4
Copyright (c) 2025 Journal of Engineering and Technological Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.