Enhancing Biogas Production through the Co-Digestion of Indigofera and Cow Manure for Electricity Generation

Downloads
The research examines the augmentation of biogas generation through the co-digestion of Indigofera tinctoria waste and cow manure, emphasising the optimization of parameters for enhanced efficiency. Anaerobic digestion presents potential for sustainable waste management and renewable energy generation. The initial discussion underscores the significance of Indigofera tinctoria, alongside challenges in managing agricultural and organic waste. The methodology encompasses substrate preparation, reactor design, and biogas utilization for electricity generation. Results indicate that substrate feeding rates and pH levels significantly influence biogas production, with optimal efficiency observed when pH is maintained between 6 and 7. Feeding rates are identified as a critical factor, highlighting the necessity for precise optimization. Additionally, managing hydrogen sulfide content is vital to mitigate corrosion risks, which can be addressed through adjustments to substrate composition. An interaction analysis between substrate feeding rates and pH revealed no significant combined effects, emphasizing the importance of understanding individual parameter dynamics to maximize production efficiency. Optimal load conditions were identified, with diminishing returns observed beyond a specific threshold. This study provides valuable insights into improving biogas production efficiency from Indigofera tinctoria waste and cow manure. Key recommendations include the optimization of substrate composition and stringent pH regulation to promote sustainable biogas production practices. Future research is encouraged to further refine biogas technology and advance its application in renewable energy systems.
Abdullah, L. (2014). Agronomic and ecophysiological prospects of Indigofera zollingeriana as a high-quality forage producing plant. Pastura, 3(2), 79–83.
Aboudi, K., Gómez-Quiroga, X., Álvarez-Gallego, C. J., & Romero-García, L. I. (2020). Insights into anaerobic co-digestion of lignocellulosic biomass (sugar beet by-products) and animal manure in long-term semi-continuous assays. Applied Sciences, 10(15), 5126.
Ahmad, R. M., Javied, S., Aslam, A., Alamri, S., Zaman, Q. U., Hassan, A., & Noor, N. (2024). Optimizing biogas production and digestive stability through waste co-digestion. Sustainability, 16(7), 3045.
Ahmed, B., Aboudi, K., Tyagi, V. K., Álvarez-Gallego, C. J., Fernández-Güelfo, L. A., Romero-García, L. I., & Kazmi, A. A. (2019). Improvement of anaerobic digestion of lignocellulosic biomass by hydrothermal pretreatment. Applied Sciences, 9(18), 3853.
Amin, F. R., Khalid, H., Zhang, H., Rahman, S. U., Zhang, R., Liu, G., & Chen, C. (2017). Pretreatment methods of lignocellulosic biomass for anaerobic digestion. Amb Express, 7, 1–12.
Bruni, E., Jensen, A. P., & Angelidaki, I. (2010). Comparative study of mechanical, hydrothermal, chemical and enzymatic treatments of digested biofibers to improve biogas production. Bioresource Technology, 101(22), 8713–8717.
Buchweitz, M. (2024). Natural solutions for blue colors in food. In Handbook on natural pigments in food and beverages (437–464). Woodhead Publishing.
Cerón-Vivas, A., Cáceres, K. T., Rincón, A., & Cajigas, Á. A. (2019). Influence of pH and the C/N ratio on the biogas production of wastewater. Revista Facultad de Ingeniería Universidad de Antioquia, (92), 70–79.
Cheng, Q., Huang, W., Jiang, M., Xu, C., Fan, G., Yan, J., ... & Song, G. (2021). Challenges of anaerobic digestion in China. International Journal of Environmental Science and Technology, 1–12.
Chettri, D., Verma, A. K., Ghosh, S., & Verma, A. K. (2024). Biogas from lignocellulosic feedstock: current status and challenges. Environmental Science and Pollution Research, 31(27), 1–26.
Degani, L., Riedo, C., & Chiantore, O. (2015). Identification of natural indigo in historical textiles by GC–MS. Analytical and Bioanalytical Chemistry, 407, 1695-1704.
Delgenès, J. P. (2003). Pretreatments for the enhancement of anaerobic digestion of solid wastes. Biomethanization of the organic fraction of municipal solid wastes.
Dioha, I. J., Ikeme, C. H., Nafi’u, T., Soba, N. I., & Yusuf, M. B. S. (2013). Effect of carbon to nitrogen ratio on biogas production. International Research Journal of Natural Sciences, 1(3), 1-10.
Dutta, N., Usman, M., Ashraf, M. A., Luo, G., Gamal El-Din, M., & Zhang, S. (2023). Methods to convert lignocellulosic waste into biohydrogen, biogas, bioethanol, biodiesel and value-added chemicals: a review. Environmental Chemistry Letters, 21(2), 803–820.
Fonseca-Bermúdez, Ó. J., Giraldo, L., Sierra-Ramírez, R., & Moreno-Piraján, J. C. (2023). Removal of hydrogen sulfide from biogas by adsorption and photocatalysis: a review. Environmental Chemistry Letters, 21(2), 1059–1073.
Hadi, S., Suyitno, S., Kroda, K. J., Arifin, Z., & Hery, K. (2014). Biofuels Produced from Hydrothermal Liquefaction of Rice Husk. Applied Mechanics and Materials, 575, 628-634.
Hariri, M. R. (2016). Genetic diversity of Tarum (Indigofera tinctoria L.) in Java and Madura islands as a natural dye for batik based on inter-simple sequence repeat markers (Doctoral dissertation, Bogor Agricultural University (IPB)).
Hjorth, M., Gränitz, K., Adamsen, A. P., & Møller, H. B. (2011). Extrusion as a pretreatment to increase biogas production. Bioresource Technology, 102(8), 4989–4994.
Ibro, M. K., Ancha, V. R., & Lemma, D. B. (2022). Impacts of anaerobic co-digestion on different influencing parameters: a critical review. Sustainability, 14(15), 9387.
Izumi, K., Okishio, Y. K., Nagao, N., Niwa, C., Yamamoto, S., & Toda, T. (2010). Effects of particle size on anaerobic digestion of food waste. International Biodeterioration & Biodegradation, 64(7), 601–608.
Jiang, J., Zhang, Y., Li, K., Wang, Q., Gong, C., & Li, M. (2013). Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate. Bioresource Technology, 143, 525–530.
Karidio Daouda Idrissa, O. K., Tsuanyo, D., Kouakou, A. R., & Yao Kouassi, B. (2023). The Effect of pH variation in Biogas production: impact of Cocoa pods and empty Palmyra Palm bunches. Waste and Biomass Valorization, 14(7), 2267–2274.
Kouzi, A. I., Puranen, M., & Kontro, M. H. (2020). Evaluation of the factors limiting biogas production in full-scale processes and increasing the biogas production efficiency. Environmental Science and Pollution Research, 27(22), 28155–28168.
Kovács, E., Wirth, R., Maróti, G., Bagi, Z., Rákhely, G., & Kovács, K. L. (2013). Biogas production from protein-rich biomass: fed-batch anaerobic fermentation of casein and of pig blood and associated changes in microbial community composition. Plos One, 8(10), e77265.
Kwietniewska, E., & Tys, J. (2014). Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. Renewable and Sustainable Energy Reviews, 34, 491–500.
Lee, D. H., Behera, S. K., Kim, J. W., & Park, H. S. (2009). Methane production potential of leachate generated from Korean food waste recycling facilities: a lab-scale study. Waste Management, 29(2), 876–882.
Lu, W., Song, Y., Liu, C., Dong, H., Li, H., Huang, Y., ... & Dang, Y. (2023). Microbial electrochemical CO2 reduction and in-situ biogas upgrading at various pH conditions. Fermentation, 9(5), 444.
Mantzouris, D., Karapanagiotis, I., & Panayiotou, C. (2014). Comparison of extraction methods for the analysis of Indigofera tinctoria and Carthamus tinctorius in textiles by high performance liquid chromatography. Microchemical Journal, 115, 78–86.
Mao, C., Feng, Y., Wang, X., & Ren, G. (2015). Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Reviews, 45, 540–555.
Mariné, S., Pedrouzo, M., Marcé, R. M., Fonseca, I., & Borrull, F. (2012). Comparison between sampling and analytical methods in characterization of pollutants in biogas. Talanta, 100, 145–152.
Martínez-Gutiérrez, E. (2018). Biogas production from different lignocellulosic biomass sources: advances and perspectives. 3 Biotech, 8(5), 233.
Miceli, N., Taviano, M. F., Kwiecień, I., Nicosia, N., Szopa, A., & Ekiert, H. (2023). Isatis tinctoria L.(Woad): cultivation, phytochemistry, pharmacology, biotechnology, and utilization. In Medicinal Plants: Biodiversity, Biotechnology and Conservation (633–673). Singapore: Springer Nature Singapore.
Mshandete, A., Björnsson, L., Kivaisi, A. K., Rubindamayugi, M. S., & Mattiasson, B. (2006). Effect of particle size on biogas yield from sisal fibre waste. Renewable Energy, 31(14), 2385–2392.
Náthia-Neves, G., Berni, M., Dragone, G., Mussatto, S. I., & Forster-Carneiro, T. (2018). Anaerobic digestion process: technological aspects and recent developments. International Journal of Environmental Science and Technology, 15, 2033-2046.
Olatunji, K. O., Ahmed, N. A., & Ogunkunle, O. (2021). Optimization of biogas yield from lignocellulosic materials with different pretreatment methods: a review. Biotechnology for Biofuels, 14, 1–34.
Patel, B. H. (2011). Natural dyes. In Handbook of textile and industrial dyeing (395–424). Woodhead Publishing.
Pattanaik, L., Naik, S. N., & Hariprasad, P. (2019). Valorization of waste Indigofera tinctoria L. biomass generated from indigo dye extraction process—potential towards biofuels and compost. Biomass Conversion and Biorefinery, 9, 445–457.
Periyasamy, S., Karthik, V., Senthil Kumar, P., Isabel, J. B., Temesgen, T., Hunegnaw, B. M., ... & Vo, D. V. N. (2022). Chemical, physical and biological methods to convert lignocellulosic waste into value-added products. A review. Environmental Chemistry Letters, 20(2), 1129–1152.
Pipatmanomai, S., Kaewluan, S., & Vitidsant, T. (2009). Economic assessment of biogas-to-electricity generation system with H2S removal by activated carbon in small pig farm. Applied Energy, 86(5), 669–674.
Poddar, B. J., Nakhate, S. P., Gupta, R. K., Chavan, A. R., Singh, A. K., Khardenavis, A. A., & Purohit, H. J. (2022). A comprehensive review on the pretreatment of lignocellulosic wastes for improved biogas production by anaerobic digestion. International Journal of Environmental Science and Technology, 1–28.
Ranieri, E., Giuliano, S., & Ranieri, A. C. (2021). Energy consumption in anaerobic and aerobic based wastewater treatment plants in Italy. Water Practice & Technology, 16(3), 851–863.
Sarker, S., Lamb, J. J., Hjelme, D. R., & Lien, K. M. (2019). A review of the role of critical parameters in the design and operation of biogas production plants. Applied Sciences, 9(9), 1915.
Sharma, S. K., Mishra, I. M., Sharma, M. P., & Saini, J. S. (1988). Effect of particle size on biogas generation from biomass residues. Biomass, 17(4), 251-263.
Tamburini, M., Pernetti, R., Anelli, M., Oddone, E., Morandi, A., Osuchowski, A., ... & Monti, M. C. (2023). Analysing the Impact on Health and Environment from Biogas Production Process and Biomass Combustion: A Scoping Review. International Journal of Environmental Research and Public Health, 20(7), 5305.
Wang, C., Shao, Z., Qiu, L., Hao, W., Qu, Q., & Sun, G. (2021). The solid-state physicochemical properties and biogas production of the anaerobic digestion of corn straw pretreated by microwave irradiation. RSC Advances, 11(6), 3575–3584.
Wang, X., Lu, X., Li, F., & Yang, G. (2014). Effects of temperature and carbon-nitrogen (C/N) ratio on the performance of anaerobic co-digestion of dairy manure, chicken manure and rice straw: focusing on ammonia inhibition. Plos One, 9(5), e97265.
Yin, X., Wei, L., Pan, X., Liu, C., Jiang, J., & Wang, K. (2021). The pretreatment of lignocelluloses with green solvent as biorefinery preprocess: a minor review. Frontiers in Plant Science, 12, 670061.
Zadeh, Z. E., Abdulkhani, A., Aboelazayem, O., & Saha, B. (2020). Recent insights into lignocellulosic biomass pyrolysis: a critical review on pretreatment, characterization, and products upgrading. Processes, 8(7), 799.
Zhang, S., Zou, K., Li, B., Shim, H., & Huang, Y. (2023). Key considerations on the industrial application of lignocellulosic biomass pyrolysis toward carbon neutrality. Engineering, 29, 35–38.
Copyright (c) 2025 Journal of Engineering and Technological Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.