Influences of Groove Geometries on Bend Radius and Springback in V-Bending
Downloads
Investigation of the V-bending process with the effect of V-grooving insert geometries is performed through finite element analysis within ANSYS LS-DYNA. Different V-groover geometries are tested to evaluate the effect on the final bent angle and bent radius of the sheet metal part, with the objective of obtaining the minimized bent angle and bent radius results. It is also observed that the corner radius of the V-groover has a major influence on the bent angle and bent radius. Due to the removal of material in the bending region, which reduced the bending resistance, an increase in the corner radius results in a decrease in both the bent angle and radius. The shape of V-groover also affects the bending results, with variations in geometries leading to variations in both bent angle and radius. When the cutting cross-sectional area is kept constant, the bent angle shows minimal variation, while the bent radius steadily increases with the V-groover angle, reaching its maximum at 90 degrees.
Agrawal, A., Marotrao, K. G., & Kumar, D. R. (2022). Metal Forming Processes. In Metal Forming Processes: Developments in Experimental and Numerical Approaches. CRC Press. https://doi.org/10.1201/9781003226703
Amada. (n.d.-a). Bending tools catalogue: premium range tools and accessories. Retrieved March 19, 2024, from https://cdn.amada.eu/fileadmin/Repository/Products/Brochures/Catalog_AFH_EN_2021.pdf
Amada. (n.d.-b). V-cut tool. Retrieved October 1, 2024, from https://www.ai-link.ne.jp/kanademo/Public_sptoolnavi/Punch/New_forming/v_cut/feature.html
ANSYS. (n.d.). LS-DYNA Contact types. Retrieved June 22, 2024, from https://lsdyna.ansys.com/contact-types/
ANSYS. (2023). LS-DYNA Theory Manual.
Badrish, A., Morchhale, A., Kotkunde, N., & Singh, S. K. (2020). Parameter Optimization in the Thermo-mechanical V-Bending Process to Minimize Springback of Inconel 625 Alloy. Arabian Journal for Science and Engineering, 45(7), 5295–5309. https://doi.org/10.1007/s13369-020-04395-9
Callister, W., & Rethwisch, D. (2013). Dislocations And Strengthening Mechanisms. In Materials Science and Engineering: An Introduction (9th ed., pp. 216–225). Wiley.
Chan, W. M., Chew, H. I., Lee, H. P., & Cheok, B. T. (2004). Finite element analysis of spring-back of V-bending sheet metal forming processes. Journal of Materials Processing Technology, 148(1), 15–24. https://doi.org/10.1016/j.jmatprotec.2003.11.038
Chen, C., Liang, J., Teng, F., Li, Y., & Liang, C. (2021). Research on springback compensation method of 3D flexible stretch bending of multi-point roller dies. The International Journal of Advanced Manufacturing Technology, 112(1–2), 563–575. https://doi.org/10.1007/s00170-020-06326-2
Chen, J. (2024). Bending R Angle And Selection of V Groove. https://www.harsle.com/bending-r-angle-and-selection-of-v-groove/
Chongthairungruang, B., Uthaisangsuk, V., Suranuntchai, S., & Jirathearanat, S. (2013). Springback prediction in sheet metal forming of high strength steels. Materials & Design, 50, 253–266. https://doi.org/10.1016/j.matdes.2013.02.060
Chou, I. N., & Hung, C. (1999). Finite element analysis and optimization on springback reduction. International Journal of Machine Tools & Manufacture, 39(3), 517–536. https://doi.org/10.1016/S0890-6955(98)00031-5
Dong, J., Ren, Y., Guo, J., Wu, K., Xiong, Z., Xiao, J., & Sun, Y. (2025). A novel real data-driven springback prediction method for roll forming based on digital twin. International Journal of Computer Integrated Manufacturing, 1–20. https://doi.org/10.1080/0951192X.2025.2478012
Doungmarda, K., & Thipprakmas, S. (2023). A New Bending Force Formula for the V-Die Bending Process. Metals, 13(3), 587. https://doi.org/10.3390/met13030587
Du, Z., Yan, Z., Cui, X., Chen, B., Yu, H., Qiu, D., Xia, W., & Deng, Z. (2022). Springback control and large skin manufacturing by high-speed vibration using electromagnetic forming. Journal of Materials Processing Technology, 299, 117340. https://doi.org/10.1016/j.jmatprotec.2021.117340
Duong, H. L., & Tran, H. N. (2025). Empowering Die Selection in V-Bending: Insights from Decision Tree Algorithms. Advances in Science and Technology, 161, 73–81. https://doi.org/10.4028/p-epV4Bq
Eggertsen, P.-A., & Mattiasson, K. (2010). On constitutive modeling for springback analysis. International Journal of Mechanical Sciences, 52(6), 804–818. https://doi.org/10.1016/j.ijmecsci.2010.01.008
El Mrabti, I., Touache, A., El Hakimi, A., & Chamat, A. (2021). Springback optimization of deep drawing process based on FEM-ANN-PSO strategy. Structural and Multidisciplinary Optimization, 64(1), 321–333. https://doi.org/10.1007/s00158-021-02861-y
Fazily, P., & Yoon, J. W. (2023). Machine learning-driven stress integration method for anisotropic plasticity in sheet metal forming. International Journal of Plasticity, 166, 103642. https://doi.org/10.1016/j.ijplas.2023.103642
Folle, L. F., Lima, T. N., Santos, M. P. S., Callegari, B., Silva, B. C. dos S., Zamorano, L. G. S., & Coelho, R. S. (2024). A Review on Sheet Metal Forming Behavior in High-Strength Steels and the Use of Numerical Simulations. Metals, 14(12), 1428. https://doi.org/10.3390/met14121428
Gisario, A., Barletta, M., & Venettacci, S. (2016). Improvements in springback control by external force laser-assisted sheet bending of titanium and aluminum alloys. Optics & Laser Technology, 86, 46–53. https://doi.org/10.1016/j.optlastec.2016.06.013
Hajiahmadi, S., Naeini, H. M., Talebi-Ghadikolaee, H., Safdarian, R., & Zeinolabedin-Beygi, A. (2023). Effect of anisotropy on spring-back of pre-punched profiles in cold roll forming process: an experimental and numerical investigation. The International Journal of Advanced Manufacturing Technology, 129(9–10), 3965–3978. https://doi.org/10.1007/s00170-023-12516-5
Hallquist, J. O., Wainscott, B., & Schweizerhof, K. (1995). Improved simulation of thin-sheet metalforming using LS-DyNA3D on parallel computers. Journal of Materials Processing Technology, 50(1–4), 144–157. https://doi.org/10.1016/0924-0136(94)01376-C
Harsle. (n.d.). What is Metal Sheet V Grooving Machine Used For? Retrieved August 8, 2025, from https://www.harsle.com/docs/metal-sheet-v-grooving-machine/
Jeon, B., Kim, M.-S., Choi, S.-H., & Jeong, Y. (2023). Finite element analysis using elasto-visco-plastic self-consistent polycrystal model for E-form Mg sheet subjected to bending. Journal of Magnesium and Alloys, 11(4), 1393–1407. https://doi.org/10.1016/j.jma.2022.10.017
Jeswiet, J., Geiger, M., Engel, U., Kleiner, M., Schikorra, M., Duflou, J., Neugebauer, R., Bariani, P., & Bruschi, S. (2008). Metal forming progress since 2000. CIRP Journal of Manufacturing Science and Technology, 1(1), 2–17. https://doi.org/10.1016/j.cirpj.2008.06.005
Krrass. (n.d.). V Groove Bending Process Explained. Retrieved August 8, 2025, from https://www.krrass.com/v-groove-bending-process-explained/
Le, A.-C., Le, V.-K., Ho, T.-H., Son, T.-A., Banh, Q.-N., & Ho, M.-T. (2025). Effects of Groove Depth and Sheet Thickness on V-Bending Process Predicted by Finite Element Analysis. Advances in Science and Technology, 161, 99–108. https://doi.org/10.4028/p-jlr02J
Lin, A. C., Tuan, H. M., & Sheu, D. K. (2011). Programming for evaluating strip layout of progressive dies. 2011 6th International Conference on Digital Information Management, ICDIM 2011, 229–234. https://doi.org/10.1109/ICDIM.2011.6093334
Lin, Z., Liu, G., Xu, W., & Bao, Y. (2000). Study on the Effects of Numerical Parameters on the Precision of Springback Prediction. 6th International LS-DYNA Conference. https://lsdyna.ansys.com/wp-content/uploads/attachments/session13-3.pdf
Ma, R., Wang, C., Zhai, R., & Zhao, J. (2019). An Iterative Compensation Algorithm for Springback Control in Plane Deformation and Its Application. Chinese Journal of Mechanical Engineering, 32(1), 28. https://doi.org/10.1186/s10033-019-0339-5
Maker, B. N., & Zhu, X. (2001). Input parameters for springback simulation using LS-DYNA. 3rd European LS-DYNA Conference. https://www.dynalook.com/conferences/european-conf-2001/58.pdf
Mikell Groover. (2012). Cutting-Tool Technology. In Fundamentals of Modern Manufacturing Materials, Processes, and Systems (5th ed., pp. 613–623). Wiley.
Mithu, M. A. H., Karim, Mohammed. A., Taj, F. A., & Rahman, A. (2025). Predicting springback in V-bending: Effects of load, load holding time, and heat treatment on common sheet-metal forming operations. Materials Today Communications, 43, 111668. https://doi.org/10.1016/j.mtcomm.2025.111668
Nguyen, D.-T., Kim, Y.-S., & Jung, D.-W. (2012). Finite element method study to predict spring-back in roll-bending of pre-coated material and select bending parameters. International Journal of Precision Engineering and Manufacturing, 13(8), 1425–1432. https://doi.org/10.1007/s12541-012-0187-z
Nilsson, A., Melin, L., & Magnusson, C. (1997). Finite-element simulation of V-die bending: a comparison with experimental results. Journal of Materials Processing Technology, 65(1–3), 52–58. https://doi.org/10.1016/0924-0136(95)02241-4
Park, A.-R., Nam, J.-H., Kim, M., Jang, I.-S., & Lee, Y.-K. (2020). Evaluations of tensile properties as a function of austenitizing temperature and springback by V-bending testing in medium-Mn steels. Materials Science and Engineering: A, 787, 139534. https://doi.org/10.1016/j.msea.2020.139534
Sandvik. (2020). Turning Tools. Scientific American. https://bit.ly/406uAw2
Sauer, M., & Morsbach, C. (2023). An optimization based multi‐block‐structured grid generation method. International Journal for Numerical Methods in Engineering, 124(19), 4254–4274. https://doi.org/10.1002/nme.7308
Schweizerhof Karl, J. O. H. (1991). Explicit Integration Schemes and Contact Formulations for Thin Sheet metal Forming. VDI Conference on “FE-Simulation of 3-D Sheet Metal Forming Processes in Automotive Industry,” 405–440.
Serope Kalpakjian, & Steven R. Schmid. (2021). Sheet-metal Forming Processes and Equipment. In Manufacturing Engineering and Technology (seventh, pp. 386–439). Pearson Education Limited.
Steve, B. (2019a). Precision sheet metal bending and the V groove (Part 1). The Fabricator. https://www.thefabricator.com/thefabricator/article/bending/precision-sheet-metal-bending-and-the-v-groove
Steve, B. (2019b). Precision sheet metal bending and the V groove (Part 2). The Fabricator. https://www.thefabricator.com/thefabricator/article/bending/precision-sheet-metal-bending-and-the-v-groove-part-ii
Trieu, Q.-H., Vuong, G.-H., & Nguyen, D.-T. (2023). Predictive Modeling of Spring-Back Behavior in V-Bending of SS400 Steel Sheets under Elevated Temperatures Using Combined Hardening Laws. Applied Sciences, 13(18), 10347. https://doi.org/10.3390/app131810347
Trzepieciński, T. (2020a). Forming Processes of Modern Metallic Materials. Metals, 10(7), 970. https://doi.org/10.3390/met10070970
Trzepieciński, T. (2020b). Recent Developments and Trends in Sheet Metal Forming. Metals, 10(6), 779. https://doi.org/10.3390/met10060779
Vaziri Sereshk, M. R., & Mohamadi Bidhendi, H. (2025). Prediction of Large Springback in the Forming of Long Profiles Implementing Reverse Stretch and Bending. Journal of Experimental and Theoretical Analyses, 3(2), 16. https://doi.org/10.3390/jeta3020016
Vuong, G. H., Nguyen, T. H. M., & Nguyen, D. T. (2020). A study on experiment and simulation to predict the spring-back of SS400 steel sheet in large radius of V-bending process. Materials Research Express, 7(1), 016562. https://doi.org/10.1088/2053-1591/ab67f5
Wahed, M. A., Gupta, A. K., Gadi, V. S. R., K, S., Singh, S. K., & Kotkunde, N. (2020). Parameter optimisation in V-bending process at elevated temperatures to minimise spring back in Ti-6Al-4V alloy. Advances in Materials and Processing Technologies, 6(2), 350–364. https://doi.org/10.1080/2374068X.2020.1728651
Wei, B., Zhang, F., He, K., Li, Z., & Du, R. (2023). Deformation and Springback Behavior of Sheet Metal With Convex-Shaped Surfaces in Heat-Assisted Incremental Bending Process Based on Minimum Energy Method. Journal of Manufacturing Science and Engineering, 145(3). https://doi.org/10.1115/1.4055961
Xu, J., Yan, J., Huang, Y., & Ding, D. (2024). Simulation and Prediction of Springback in Sheet Metal Bending Process Based on Embedded Control System. Sensors, 24(23), 7863. https://doi.org/10.3390/s24237863
Yan, Z., Du, Z., Cui, X., Huang, C., & Meng, Y. (2021). Springback and deformation uniformity of high-strength aluminum alloy sheet using electromagnetic forming. The International Journal of Advanced Manufacturing Technology, 114(5–6), 1293–1308. https://doi.org/10.1007/s00170-021-06926-6
Yang, D. Y., Bambach, M., Cao, J., Duflou, J. R., Groche, P., Kuboki, T., Sterzing, A., Tekkaya, A. E., & Lee, C. W. (2018). Flexibility in metal forming. CIRP Annals, 67(2), 743–765. https://doi.org/10.1016/J.CIRP.2018.05.004
Copyright (c) 2025 Journal of Engineering and Technological Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.








