Life Cycle Assessment of Decaffeinated Coffee Beans Production

Downloads
Life Cycle Assessment (LCA) analysis was conducted on the simulation of the production process of decaffeinated coffee beans using ethyl acetate (EA) and dichloromethane (DCM) solvents. The methods employed include the cradle-to-gate system, the ReCiPe 2016 midpoint method, and a hierarchic perspective on OpenLCA. The analysis used 320 kg of Robusta coffee beans per batch with the scope of analysis consisting of planting, postharvest, transportation, and decaffeination. The overall results of the hotspot analysis were human carcinogenic toxicity, marine ecotoxicity, global warming, freshwater ecotoxicity, and land use of 8 x 101 kg 1,4-dichlorobenzene eq, 1 x 101 kg 1,4-dichlorobenzene eq, 6 x 104 kg CO2 eq, 7 x 100 kg 1,4-dichlorobenzene eq, and 3 x 104 m2a crop eq for both EA and DCM. Comparison of the two solvents shows that the biggest environmental impacts were marine ecotoxicity, freshwater ecotoxicity, and human carcinogenic toxicity of 8.52 x 100 kg 1,4-dichlorobenzene eq, 5.44 x 100 kg 1,4-dichlorobenzene eq, 7.65 x 100 kg 1,4-dichlorobenzene eq for EA, and 8.52 x 100 kg 1,4-dichlorobenzene eq, 5.61 x 100 kg 1,4-dichlorobenzene eq, 8.03 x 100 kg 1,4-dichlorobenzene eq for DCM. Cultivation, extraction, and drying were the stages of considerable environmental impact. The application of agroforestry, reduction of inorganic and organic fertilizers, and the use of more environmentally friendly electricity sources serve as alternatives to reduce emissions.
Adiwinata, F., Suprihatin, S., & Rahayuningsih, M. (2021). Life Cycle Assessment of Wet-Processed Robusta Ground Coffee Production at the Beloe Klasik Small and Medium Industry (SMI) in Lampung. Agrointek: Jurnal Teknologi Industri Pertanian, 15(4), 1175–1182. https://doi.org/10.21107/agrointek.v15i4.11338 (Text in Indonesian)
Statistics Indonesia. (2020). Indonesian Coffee Statistics 2020. ISSN: 2714-8505.
Bermejo, D. V., Luna, P., Manic, M. S., Najdanovic-Visak, V., Reglero, G., & Fornari, T. (2013). Extraction of caffeine from natural matter using a bio-renewable agrochemical solvent. Food and Bioproducts Processing, 91(4), 303–309. https://doi.org/10.1016/j.fbp.2012.11.007
Blumberg, S., Frank, O., & Hofmann, T. (2010). Quantitative studies on the influence of the bean roasting parameters and hot water percolation on the concentrations of bitter compounds in coffee brew. Journal of Agricultural and Food Chemistry, 58(6), 3720-3728. https://doi.org/10.1021/jf9044606
Cayot, N., Lafarge, C., Bou-Maroun, E., & Cayot, P. (2016). Substitution of carcinogenic solvent dichloromethane for the extraction of volatile compounds in a fat-free model food system. J Chromatogr A, 1456, 77–88. https://doi.org/10.1016/j.chroma.2016.06.015
Corcelli, F., Ripa, M., & Ulgiati, S. (2017). End-of-life treatment of crystalline silicon photovoltaic panels. An emergy-based case study. Journal of Cleaner Production, 161, 1129–1142. https://doi.org/10.1016/j.jclepro.2017.05.031
De Marco, I., Riemma, S., & Iannone, R. (2018). Life cycle assessment of supercritical CO2 extraction of caffeine from coffee beans. Journal of Supercritical Fluids, 133, 393–400. https://doi.org/10.1016/j.supflu.2017.11.005
European Parliament and Council of the European Union. (1999). Directive 1999/4/EC of the European Parliament and of the Council of 22 February 1999 relating to coffee extracts and chicory extracts (L 66/26). Official Journal of the European Communities.
Feng, H., Zhao, J., Hollberg, A., & Habert, G. (2023). Where to focus? Developing a LCA impact category selection tool for manufacturers of building materials. Journal of Cleaner Production, 405, 136936. https://doi.org/10.1016/j.jclepro.2023.136936
Galbreath, K.C., & Zygarlicke, C.J. (2004). Formation and chemical speciation of arsenic-, chromium-, and nickel-bearing coal combustion PM2.5. Fuel Processing Technology, 85(6–7).
Jiang, H., Lu, R., Si, X., Luo, X., Xu, J., & Lu, F. (2019). Single-Site Molybdenum Catalyst for the Synthesis of Fumarate. ChemCatChem, 11(17), 4291-4296.
Lugo-Pérez, J., Hajian-Forooshani, Z., Perfecto, I., & Vandermeer, J. (2023). The importance of shade trees in promoting carbon storage in the coffee agroforest systems. Agriculture, Ecosystems and Environment, 355, 108594. Department of Natural Sciences, University of Puerto Rico at Utuado, Utuado, PR, USA. https://doi.org/10.1016/j.agee.2023.108594
Mattila, T., Helin, T., Antikainen, R., Soimakallio, S., Pingoud, K., & Wessman, H. (2011). Land use in life cycle assessment. http://hdl.handle.net/10138/37049
Miyoshi, S. C., & Secchi, A. R. (2024). Simultaneous Life Cycle Assessment and Process Simulation for Sustainable Process Design. Processes, 12(7), 1285. https://doi.org/10.3390/pr12071285
Nriagu, J. O., & Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333(6169), 134–139. https://doi.org/10.1038/333134a0
Patel, J.M., & Wolfson, A.B. (1972). United States Patent 19 54 Decaffeination of a Coffee Extract.
Patel, J. M., & Wolfson, A. B. (1972). U.S. Patent No. 3,671,263. Washington, DC: U.S. Patent and Trademark Office.
Phrommarat, B. (2019). Life cycle assessment of ground coffee and comparison of different brewing methods: A case study of organic arabica coffee in Northern Thailand. Environmental and Natural Resources Journal, 17(2), 96–108. 10.32526/ennrj.17.2.2019.16
Prasad, S., Yadav, K. K., Kumar, S., Gupta, N., Cabral-Pinto, M. M. S., & Rezania, S., et al. (2020). Chromium contamination and effect on environmental health and its remediation: A sustainable approaches. J Environ Manage, 285, 112174.https://doi.org/10.1016/j.jenvman.2021.112174
Salomone, R. (2003). Life cycle assessment applied to coffee production: Investigating environmental impacts to aid decision making for improvements at company level. Food and Agriculture Organization of the United Nations.
Sebastião, D., Gonçalves, M. S., Marques, S., Fonseca, C., Gírio, F., Oliveira, A. C., & Matos, C. T. (2016). Life cycle assessment of advanced bioethanol production from pulp and paper sludge. Bioresource Technology, 208, 100–109. https://doi.org/10.1016/j.biortech.2016.02.049
Shofinita, D., Lestari, D., Aliwarga, L., Sumampouw, G. A., Ambarwati, S. A., Gunawan, K. C., & Achmadi, A. B. (2024a). Drying methods of coffee extracts and their effects on physicochemical properties: A review. Food and Bioprocess Technology, 17(1), 47-72. https://doi.org/10.1007/s11947-023-03067-4
Shofinita, D., Lestari, D., Ambarwati, S. A., Gunawan, K. C., & Achmadi, A. B. (2023). Optimization of Defective Coffee Beans Decaffeination Using Palm Oil. ASEAN Journal of Chemical Engineering, 23(2), 142-153. https://doi.org/10.22146/ajche.73387
Shofinita, D., Lestari, D., Purwadi, R., Sumampouw, G. A., Gunawan, K. C., Ambarwati, S. A., & Tjahjadi, J. T. (2024b). Effects of different decaffeination methods on caffeine contents, physicochemical, and sensory properties of coffee. International Journal of Food Engineering, 20(8), 561-581. https://doi.org/10.1515/ijfe-2024-0013
Silva, D., et al. (2017). How important is the LCA software tool you choose: Comparative results from GaBi, openLCA, SimaPro and Umberto. In Proceedings of the VII Conferencia Internacional de Análisis de Ciclo de Vida en Latinoamérica. Medellín, Colombia.
Solarin, S. A., & Bello, M. O. (2022). Wind energy and sustainable electricity generation: evidence from Germany. Environ Dev Sustain, 24(7), 9185-9206. https://doi.org/10.1007/s10668-021-01818-x
Supriadi, H., & Pranowo, D. (2015). Prospects of Agroforestry Development Based on Coffee in Indonesia. Perspektif: Review Penelitian Tanaman Industri, 14(2), 135-150.
Swaine, D. J. (2013). Trace Elements in Coal. Butterworth-Heinemann. Butterworth and Co. (Publishers) Ltd., London, 278 p.
The U.S. Department of Agriculture. Commercial Item Description: Coffee. 1996.
Verchot, L., Anitha, K., Romijn, J. E., Herold, M., & Hergoualc'h, K. (2012). Emissions factors: Converting land use change to CO2 estimates. Analysing REDD+: Challenges and choicescited ,261–78.
Warlina, L., Noor, E., Fauzi, A., Tarumingkeng, R. C., & Sutjahjo, S. H. (2008). Estimated Dioxin/Furan Emissions and Factors Influencing Air Emission Concentrations from the Metal Industry. Jurnal Matematika, Sains, dan Teknologi, 9(1), 31–43. (Text in Indonesian)
Widyotomo, S., Mulato, S., Purwadaria, H. K., & Syarief, A. M. (2009). Decaffeination process characteristic of robusta coffee in single column reactor using ethyl acetate solvent. Pelita Perkebunan (Coffee and Cocoa Research Journal), 25(2), 101–125. https://doi.org/10.22302/iccri.jur.pelitaperkebunan.v25i2.133
Wielgosiński G. (2011). The Reduction of Dioxin Emissions from the Processes of Heat and Power Generation. J Air Waste Manage Assoc, 61(5), 511–26. https://doi.org/10.3155/1047-3289.61.5.511
Willson, C. (2018). The clinical toxicology of caffeine: A review and case study. Toxicology Reports, 5, 1140-1152. https://doi.org/10.1016/j.toxrep.2018.11.002
World Health Organization. (1995). IARC monographs on the identification of carcinogenic hazards to humans. https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans
Copyright (c) 2025 Journal of Engineering and Technological Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.