Real-time Monitoring of Carbon Dioxide with IoT ThingSpeak using TiO2 Thick Film Gas Sensor
Downloads
Carbon dioxide is a colorless, odorless, and non-flammable gas and is claimed to be the fourth most abundant in the earth's atmosphere. Carbon dioxide emission is mainly generated by human and animal exhalation, decomposition of organic matter, and forest fires. Moreover, human activities in the industrial sector emit high levels of carbon dioxide gas, such as through fossil fuel burning, transportation, and deforestation. It is also an asphyxiant and high exposure to it may lead to health effects in humans such as headaches, breathing difficulty, tiredness, coma, and elevated blood pressure. Therefore, in this paper, a carbon dioxide gas sensor with IoT using TiO2 is proposed to observe varying concentrations of carbon dioxide gas at room temperature. Three similar gas sensors were fabricated via screen-printing technology to compare their performance towards carbon dioxide. The hardware development consisted of an Arduino Uno R3 with ESP 8266 Wi-Fi module, wires, LCD display, red and green LEDs, and a 5V power supply. The ThingSpeak application was integrated with the gas sensor and hardware parts to monitor the carbon dioxide concentration in a real-time system. Gas sensor G1 produced the highest response and highest sensitivity with values of 2.120 and 0.245, respectively.
Ritchie, H. & Roser, M., CO2 Emissions, https://ourworldindata.org/co2-emissions (October 02, 2023).
George, A., Shen, B., Craven, M., Wang, Y., Kang, D., Wu, C. & Tu, X., A Review of Non-thermal Plasma Technology: A Novel Solution for CO2 Conversion and Utilization, Renew. Sustain. Energy Rev., 135, 109702, 2021. doi: 10.1016/j.rser.2020.109702.
Prakash, S., Impact of Climate Change on Biodiversity: An Overview, Int. J. Biol. Innov., 3(2), pp. 312-317,2021.
Manabe, S., Role of Greenhouse Gas in Climate Change, Tellus, Ser. A Dyn. Meteorol. Oceanogr., 71(1), pp. 1-13, 2019. doi: 10.1080/16000870.2019.1620078.
Yoro, K.O. & Daramola, M.O., CO2 Emission Sources, Greenhouse Gases, and the Global Warming Effect, pp. 3-28, Elsevier Inc., 2020.
Reveshti, A.M., Ebrahimpour, A. & Razmara, J., Investigating the Effect of New and Old Weather Data on the Energy Consumption of Buildings Affected by Global Warming in Different Climates, Int. J. Thermofluids, 19, 100377, 2023. doi: 10.1016/j.ijft.2023.100377.
Calleja-Agius, J., England, K. & Calleja, N., The Effect of Global Warming on Mortality, Early Hum. Dev., 155, 2021. doi: 10.1016/j.earlhumdev.2020.105222.
Piwowarczyk, R. & Kolanowska, M., Predicting the Effect of Global Warming on the Distribution of a Polyphagous Tree Parasite, Orobanche Laxissima, based on Climatic and Ecological Data, Glob. Ecol. Conserv., 44, e02486, 2023. doi: 10.1016/j.gecco.2023.e02486.
Terrenoire, E., Hauglustaine, D.A., Gasser, T. & Penanhoat, O., The Contribution of Carbon Dioxide Emissions from the Aviation Sector to Future Climate Change, Environ. Res. Lett., 14(8), 0840192019. doi: 10.1088/1748-9326/ab3086.
Töbelmann, D. & Wendler, T., The Impact of Environmental Innovation on Carbon Dioxide Emissions, J. Clean. Prod., 244, 2020. doi: 10.1016/j.jclepro.2019.118787.
Lacetera, N., Impact of Climate Change on Animal Health and Welfare, Anim. Front., 9(1), pp. 26-31, 2019. doi: 10.1093/af/vfy030.
Permentier, K., Vercammen, S., Soetaert, S. & Schellemans, C., Carbon Dioxide Poisoning: A Literature Review of an Often Forgotten Cause of Intoxication in the Emergency Department, Int. J. Emerg. Med., 10(1), pp. 17-20, 2017. doi: 10.1186/s12245-017-0142-y.
Erdmann C.A. & Apte, M.G., Mucous Membrane and Lower Respiratory Building Related Symptoms in Relation to Indoor Carbon Dioxide Concentrations in the 100-Building BASE Dataset, Indoor Air, Suppl., 14(8), pp. 127-134, 2004. doi: 10.1111/j.1600-0668.2004.00298.x.
Mohd Azmi, N.Z., Buthiyappan, A., Abdul Raman, A.A., Abdul Patah, M.F. & Sufian, S., Recent Advances in Biomass based Activated Carbon for Carbon Dioxide Capture – A Review, J. Ind. Eng. Chem., 116, pp. 1-20, 2022. doi: 10.1016/j.jiec.2022.08.021.
Onkar, S.G., Raghuwanshi, F.C., Patil, D.R. & Krishnakumar, T., Synthesis, Characterization and Gas Sensing Study of SnO2 Thick Film Sensor Towards H2S, NH3, LPG and CO2, Mater. Today Proc., 23, pp. 190-201, 2020. doi: 10.1016/j.matpr.2020.02.017.
Karthik, T.V.K., Martinez, L. & Agarwal, V., Porous Silicon Zno/SnO2 Structures for CO2 Detection, J. Alloys Compd., 731, pp. 853-863, 2018. doi: 10.1016/j.jallcom.2017.10.070.
Bhowmick, T., Ghosh, A., Nag, S. & Majumder, S.B., Sensitive and Selective CO2 Gas Sensor based on CuO/ZnO Bilayer Thin-film Architecture, J. Alloys Compd., 903, 163871, 2022. doi: 10.1016/j.jallcom.2022.163871.
Thomas, T., Kumar, Y., Ramón, J.A.R., Agarwal, V., Guzmán, S.S., R, Reshmi, Pushpan, S., Loredo, S.L. & Sanal, K.C., Porous Silicon/Α-MoO3 Nanohybrid based Fast and Highly Sensitive CO2 Gas Sensors, Vacuum, 184, 109983, 2021. doi: 10.1016/j.vacuum.2020.109983.
Tanvir, N.B., Yurchenko, O., Laubender, E. & Urban, G., Investigation of Low Temperature Effects on Work Function Based CO2 Gas Sensing of Nanoparticulate CuO Films, Sensors Actuators, B Chem., 247, pp. 968-974, 2017. doi: 10.1016/j.snb.2016.11.020.
Yadav, A.A., Lokhande, A.C., Kim, J.H. & Lokhande, C.D., Enhanced Sensitivity and Selectivity of CO2 Gas Sensor based on Modified La2O3 Nanorods, J. Alloys Compd., 723, pp. 880-886, 2017. doi: 10.1016/j.jallcom.2017.06.223.
Dutta, T., Noushin, T., Tabassum, S.& Mishra, S.K., Road Map of Semiconductor Metal-Oxide-Based Sensors: A Review, Sensors, 23(15), 6849, 2023. doi: 10.3390/s23156849.
Shamsudin, N.H., Shafie, S., Ab Kadir, M.Z.A., Ahmad, F., Sulaiman, Y., Chachuli, S.A.M., Razali, M.C., Flexible Back-illuminated Dye Sensitised Solar Cells (Dsscs) with Titanium Dioxide/Silver Nanoparticles Composite Photoanode for Improvement of Power Conversion Efficiency, Optik (Stuttg)., 272, 170237, 2023, doi: 10.1016/j.ijleo.2022.170237.
Ezairi, S., Elouafi, A., Lmai, F., Tizliouine, A. & Elbachiri, A., Effect of Cerium Doping in Tuning the Optical and Photoluminescence Properties of TiO2 Nanoparticles, J Mater Sci Mater Electron, 34(28), 1924, 2023.
Ezairi, S., Elouafi, A., Lmai, F. & Tizliouine, A., Enhancement of Structural, Linear and Non-linear Optical Properties of Ti1−Xca2xo2 Solid Solutions, Phys. Scr., 97(11), 2022.
Lu, N., Fan, S., Zhao, Y., Yang, B., Hua, Z. & Wu, Y., A Selective Methane Gas Sensor with Printed Catalytic Films as Active Filters, Sensors Actuators B Chem., 347, 2021. doi: 10.1016/j.snb.2021.130603.
Kilinç, N., Şennik, E., Işik, M., Ahsen, A.Ş., Öztürk, O. & Öztürk, Z.Z., Fabrication and Gas Sensing Properties of C-doped and Un-doped TiO2 Nanotubes, Ceram. Int., 40(1) PART A, pp. 109-115, 2014. doi: 10.1016/j.ceramint.2013.05.110.
Chachuli, S.A.M., Nizar Hamidon, M., Ertugrul, M., Mamat, M.S., Jaafar, H. & Shamsudin, N.H., TiO2/B2O3 Thick Film Gas Sensor for Monitoring Carbon Monoxide at Different Operating Temperatures, in Journal of Physics: Conference Series, 1432(1), 2020. doi: 10.1088/1742-6596/1432/1/012040.
Chachuli, S.A.M, Hamidon, M.N., Ertugurl, M., Mamat, M.S., Coban, O., Shamsudin, N.H. & Arith, F., Effects of Silver Diffusement on TiO2-B2O3 Nanocomposite Sensor Towards Hydrogen Sensing, Mater. Res. Innov., pp. 1-14, 2024. doi: 10.1080/14328917.2024.2304480.
Chachuli, S.A.M., Nizar, M., Mehmet, H., Shuhazlly, E. & Omer, M., Comparative Analysis of Hydrogen Sensing based on Treated‑TiO2 in Thick Film Gas Sensor, Appl. Phys. A, 128, 196, 2022. doi: 10.1007/s00339-022-05738-z.
Georgiana, M., Scarisoareanu, A., Morjan, I., Dutu, E., Badiceanu, M. & Mihailescu, I., Applied Surface Science Principal Component Analysis of Raman Spectra for TiO2 Nanoparticle Characterization, Appl. Surf. Sci., 417, pp. 93-103, 2017. doi: 10.1016/j.apsusc.2017.01.193.
Duan, X., Jiang, Y., Liu, B., Duan, Z., Zhang, Y., Yuan, Z. & Tai, H., Enhancing the Carbon Dioxide Sensing Performance of Lafeo3 by Co Doping, Sensors Actuators B Chem., 402(October 2023), 135136, 2024. doi: 10.1016/j.snb.2023.135136.
Copyright (c) 2024 Journal of Engineering and Technological Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.