Green Energy Technologies: A Key Driver in Carbon Emission Reduction
Downloads
This paper explores the vital role of green energy technologies in mitigating carbon emissions and advancing sustainable energy transition. It emphasizes the significance of green energy in reducing the carbon footprint, delves into the environmental consequences of carbon emissions, and analyzes the mechanisms through which green energy contributes to carbon reduction. This paper discusses technological advancements across various renewable energy sources, including solar, wind, hydroelectric, biomass, geothermal, tidal, wave, nuclear, osmotic, and salinity-powered energy generation. It also examines emerging green energy technologies, identifies barriers to adoption, offers an Indonesian perspective, and provides recommendations for a greener energy future. Overall, this paper offers a comprehensive exploration of green energy's transformative potential in combatting climate change and promoting sustainable development.
Kabeyi, M.J.B. & Olanrewaju, O.A., Sustainable Energy Transition for Renewable and Low Carbon Grid Electricity Generation and Supply, Front Energy Res, 9, 743114, 2022. doi: 10.3389/fenrg.2021.743114
Rahman, A., Farrok, O. & Haque, M.M., Environmental Impact of Renewable Energy Source Based Electrical Power Plants: Solar, Wind, Hydroelectric, Biomass, Geothermal, Tidal, Ocean, and Osmotic, Renew Sustain Energy Rev, 161, 112279, 2022. doi: 10.1016/j.rser.2022.112279
Sayed, E.T., Wilberforce, T., Elsaid, K., Rabaia, M.K.H., Abdelkareem, M.A., Chae, K.-J., Olabi, A.G., A Critical Review on Environmental Impacts of Renewable Energy Systems and Mitigation Strategies: Wind, Hydro, Biomass and Geothermal, Sci Total Environ, 766, 144505, 2021. doi: 10.1016/j.scitotenv.2020.144505
Srivastava, S. & Srivastava, M.K., An Innovative Design of Hybrid System Using Wind Turbine and Photovoltaic Panel System, SAMRIDDHI: A Journal of Physical Sci, Eng Technol, 14, pp. 166-169, 2022. doi: 10.18090/samriddhi.v14i02.6
Ackshaya Varshini, K.S., Aswin, A.K., Rajan, H. & Maanav Charan, K.S., Concept Design and Numerical Analysis of Hybrid Solar–Wind Turbine, IOP Conf Ser Earth Environ Sci, 850, 012032, 2021. doi: 10.1088/1755-1315/850/1/012032
Parabhane, R., Patil, S. & Omase, N., Artificial Neural Networks Based Power Management Scheme with Enhanced Stability for a Solar Panel/Wind Turbine Generator/Fuel cell/Battery/Power Supply Designed for Industrial Loads, in: 2022 International Conference for Advancement in Technology (ICONAT), IEEE, pp. 1-7, 2022. doi: /10.1109/ICONAT53423.2022.9725984
Maulana, F. & Mutmainah, S., Design of Electrical Energy Power System Based on Wind Turbine and Solar Panel, Conference SENATIK STT Adisutjipto Yogyakarta, 5, 2019. doi: 10.28989/senatik.v5i0.377
Kant, N. & Singh, P., Review of Next Generation Photovoltaic Solar Cell Technology and Comparative Materialistic Development, Mater Today Proc, 56, pp. 3460-3470, 2022. doi: 10.1016/j.matpr.2021.11.116
Zhu, J., Cai, X., Ma, D., Zhang, J. & Ni, X., Improved Structural Design of Wind Turbine Blade Based on Topology and Size Optimization, Int J Low-Carbon Technol, 17, pp. 69-79, 2022. doi: 10.1093/ijlct/ctab087
Posada, J.O.G., Rennie, A.J.R., Villar, S.P., Martins, V.L., Marinaccio, J., Barnes, A., Glover, C.F., Worsley, D.A. & Hall, P.J., Aqueous Batteries as Grid Scale Energy Storage Solutions, Renew Sustain Energy Rev, 68, pp. 1174–1182, 2017. doi: 10.1016/j.rser.2016.02.024.
Rahman, A., Farrok, O. & Haque, M.M., Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic, Renew Sustain Energy Rev, 161, 112279, 2022. doi: 10.1016/j.rser.2022.112279.
Güven, A.F., Yörükeren, N. & Samy, M.M., Design optimization of a stand-alone green energy system of university campus based on Jaya-Harmony Search and Ant Colony Optimization algorithms approaches, Energy, 253, 124089, 2022. doi: 10.1016/j.energy.2022.124089.
Tsang, C.H.A., Huang, H., Xuan, J., Wang, H. & Leung, D.Y.C., Graphene Materials in Green Energy Applications: Recent Development and Future Perspective, Renew Sustain Energy Rev, 120, 109656, 2020. doi: 10.1016/j.rser.2019.109656.
Shakthivel, D., Dahiya, A.S., Mukherjee, R. & Dahiya, R., Inorganic Semiconducting Nanowires for Green Energy Solutions, Curr Opin Chem Eng, 34, 100753, 2021. doi: 10.1016/j.coche.2021.100753.
Mensah-Darkwa, K., Zequine, C., Kahol, P. & Gupta, R., Supercapacitor Energy Storage Device using Biowastes: A Sustainable Approach to Green Energy, Sustainability, 11, 414, 2019. doi: 10.3390/su11020414.
Bhowmik, C., Bhowmik, S., Ray, A. & Pandey, K.M., Optimal Green Energy Planning for Sustainable Development: A Review, Renew Sustain Energy Rev, 71, pp. 796-813, 2017. doi: 10.1016/j.rser.2016.12.105.
Tan, R.R., Aviso, K.B. & Ng, D.K.S., Optimization Models for Financing Innovations in Green Energy Technologies, Renew Sustain Energy Rev, 113, 109258, 2019. doi: 10.1016/j.rser.2019.109258.
Tan, H., Li, J., He, M., Li, J., Zhi, D., Qin, F. & Zhang, C., Global Evolution of Research on Green Energy And Environmental Technologies: A Bibliometric Study, J Environ Manage, 297, 113382, 2021. doi: 10.1016/j.jenvman.2021.113382.
Zhang, Q., Suresh, L., Liang, Q., Zhang, Y., Yang, L., Paul, N. & Tan, S.C., Emerging Technologies for Green Energy Conversion and Storage, Adv Sustain Syst, 5, 2000152, 2021. doi: 10.1002/adsu.202000152.
Adha, R., Hong, C.-Y., Agrawal, S. & Li, L.-H., ICT, Carbon Emissions, Climate Change, and Energy Demand Nexus: The Potential Benefit of Digitalization in Taiwan, Energy Environ, 34, pp. 1619-1638, 2023. doi: 10.1177/0958305X221093458.
Hansen, J., Kharecha, P., Sato, M., Masson-Delmotte, V., Ackerman, F., Beerling, D.J., Hearty, P.J., Hoegh-Guldberg, O., Hsu, S.-L., Parmesan, C., Rockstrom, J., Rohling, E.J., Sachs, J., Smith, P., Steffen, K., Van Susteren, L., von Schuckmann, K. & Zachos, J.C., Assessing “Dangerous Climate Change”: Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature, PLoS One, 8, e81648, 2013. doi: 10.1371/journal.pone.0081648.
Rogelj, J., Hare, W., Lowe, J., van Vuuren, D.P., Riahi, K., Matthews, B., Hanaoka, T., Jiang, K. & Meinshausen, M., Emission Pathways Consistent with a 2°C Global Temperature Limit, Nat Clim Change, 1, pp. 413-418, 2011. doi: /10.1038/nclimate1258.
Ekwurzel, B., Boneham, J., Dalton, M.W., Heede, R., Mera, R.J., Allen, M.R. & Frumhoff, P.C., The Rise In Global Atmospheric CO2, Surface Temperature, and Sea Level from Emissions Traced to Major Carbon Producers, Clim Change, 144, pp. 579-590, 2017. doi: 10.1007/s10584-017-1978-0.
Ozsahin, E., Ozdes, M., Ozturk, M. & Yang, D., Coastal Vulnerability Assessment of Thrace Peninsula: Implications for Climate Change and Sea Level Rise, Remote Sens (Basel), 15, 5592, 2023. doi: 10.3390/rs15235592.
Hermans, T.H.J., Malagón-Santos, V., Katsman, C.A., Jane, R.A., Rasmussen, D.J., Haasnoot, M., Garner, G.G., Kopp, R.E., Oppenheimer, M. & Slangen, A.B.A., The Timing of Decreasing Coastal Flood Protection Due to Sea-Level Rise, Nat Clim Change, 13, pp. 359-366, 2023. doi: 10.1038/s41558-023-01616-5.
Croteau, R., Pacheco, A. & Ferreira, Ó., Flood Vulnerability Under Sea Level Rise for a Coastal Community Located in a Backbarrier Environment, Portugal, J Coast Conserv, 27, 28, 2023. doi: 10.1007/s11852-023-00955-x.
Perera, A.T.D., Nik, V.M., Chen, D., Scartezzini, J.-L. & Hong, T., Quantifying the Impacts of Climate Change and Extreme Climate Events on Energy Systems, Nat Energy, 5, pp. 150–159, 2020. doi: 10.1038/s41560-020-0558-0.
Ebi, K.L., Vanos, J., Baldwin, J.W., Bell, J.E., Hondula, D.M., Errett, N.A., Hayes, K., Reid, C.E., Saha, S., Spector, J. & Berry, P., Extreme Weather and Climate Change: Population Health and Health System Implications, Annu Rev Public Health, 42, pp. 293-315, 2021. doi: 10.1146/annurev-publhealth-012420-105026.
De Sario, M., Katsouyanni, K. & Michelozzi, P., Climate Change, Extreme Weather Events, Air Pollution and Respiratory Health in Europe, European Respiratory J, 42, 826, 2013. doi: 10.1183/09031936.00074712.
Newman, R. & Noy, I., The Global Costs of Extreme Weather That Are Attributable to Climate Change, Nat Commun, 14, pp. 6103, 2023. doi: 10.1038/s41467-023-41888-1.
Widdicombe, S., Isensee, K., Artioli, Y., Gaitán-Espitia, J.D., Hauri, C., Newton, J.A., Wells, M. & Dupont, S., Unifying Biological Field Observations to Detect and Compare Ocean Acidification Impacts Across Marine Species and Ecosystems: What to Monitor and Why, Ocean Sci, 19, pp. 101-119, 2023. doi: 10.5194/os-19-101-2023.
Andersson, A.J. & Gledhill, D., Ocean Acidification and Coral Reefs: Effects on Breakdown, Dissolution, and Net Ecosystem Calcification, Ann Rev Mar Sci, 5, pp. 321-348, 2013. doi: 10.1146/annurev-marine-121211-172241.
Fabricius, K.E., Theme Section on “Ocean Acidification and Coral Reefs,”, Coral Reefs, 27, pp. 455-457, 2008. doi: 10.1007/s00338-008-0395-2.
Benka, S.G., Ocean Acidification and Coral Reefs, Phys Today, 65, 20, 2012. doi: 10.1063/PT.3.1430.
Lipton, D., Carter, S.L., Peterson, J., Crozier, L.G., Fogarty, M., Gaichas, S., Hyde, K.J.W., Morelli, T.L., Morisette, J., Moustahfid, H., Muñoz, R., Poudel, R., Rubenstein, M., Staudinger, M.D., Stock, C.A., Thompson, L.M., Waples, R., Weiskopf, S.R. & Weltzin, J.F., Chapter 7 : Ecosystems, Ecosystem Services, and Biodiversity. Impacts, Risks, and Adaptation in the United States: The Fourth National Climate Assessment, Volume II, Washington, DC, 2018. doi: 10.7930/NCA4.2018.CH7.
Wudu, K., Abegaz, A., Ayele, L. & Ybabe, M., The Impacts of Climate Change on Biodiversity Loss and Its Remedial Measures Using Nature Based Conservation Approach: A Global Perspective, Biodivers Conserv, 32, pp. 3681-3701, 2023. doi: 10.1007/s10531-023-02656-1.
Agele, S., Global Warming and Drought, Agriculture, Water Resources, and Food Security: Impacts and Responses from the Tropics, in: Handbook of Climate Change Management, Springer International Publishing, Cham, pp. 721-740, 2021. doi: 10.1007/978-3-030-57281-5_183.
Labrousse, C., Ludwig, W., Pinel, S., Sadaoui, M., Toreti, A. & Lacquement, G., Declining Water Resources in Response to Global Warming and Changes in Atmospheric Circulation Patterns Over Southern Mediterranean France, Hydrol Earth Syst Sci, 26, pp. 6055–6071, 2022. doi: 10.5194/hess-26-6055-2022.
Cheverda, V., Bratchikov, D., Gadylshin, K., Golubeva, E., Malakhova, V. & Reshetova, G., Subsea Methane Hydrates: Origin and Monitoring the Impacts of Global Warming, Appl Sci, 12, 11929, 2022. doi: 10.3390/app122311929.
Mateos, R.M., Sarro, R., Díez-Herrero, A., Reyes-Carmona, C., López-Vinielles, J., Ezquerro, P., Martínez-Corbella, M., Bru, G., Luque, J.A., Barra, A., Martín, P., Millares, A., Ortega, M., López, A., Galve, J.P., Azañón, J.M., Pereira, S., Santos, P.P., Zêzere, J.L., Reis, E., Garcia, R.A.C., Oliveira, S.C., Villatte, A., Chanal, A., Gasc-Barbier, M. & Monserrat, O., Assessment of the Socio-Economic Impacts of Extreme Weather Events on the Coast of Southwest Europe During the Period 2009–2020, Applied Sciences, 13, 2640, 2023. doi: 10.3390/app13042640.
Hu, Y., Wang, D., Huo, J., Chemutai, V., Brenton, P., Yang, L. & Guan, D., Assessing the Economic Impacts of a Perfect Storm of Extreme Weather, Pandemic Control, and Export Restrictions: A Methodological Construct, Risk Analysis, 44, pp. 155-189, 2024. doi: 10.1111/risa.14146.
Su, N. & Wen, H., The Impact of Extreme Weather Events on the Economic Performance, BCP Business & Management, 38, pp. 2703-2709, 2023. doi: 10.54691/bcpbm.v38i.4176.
Byg, B. & Shah, A.D., Heating up: Climate Change and the Threat to Human Health, Curr Opin Nephrol Hypertens, 33, pp. 78–82, 2024. doi: 10.1097/MNH.0000000000000933.
Kamel Boulos, M.N. & Wilson, J.P., Geospatial Techniques for Monitoring and Mitigating Climate Change and Its Effects on Human Health, Int J Health Geogr, 22, 2, 2023. doi: 10.1186/s12942-023-00324-9.
Linh Tran, N.Q., Cam Hong Le, H.T., Pham, C.T., Nguyen, X.H., Tran, N.D., Thi Tran, T.-H., Nghiem, S., Luong, T.M. Ly, Bui, V., Nguyen-Huy, T., Doan, V.Q., Dang, K.A., Do, T.H. Thuong, Ngo, H.K. Thi, Nguyen, T.V., Nguyen, N.H., Do, M.C., Ton, T.N., Dang, T.A. Thu, Nguyen, K., Tran, X.B., Thai, P. & Phung, D., Climate Change and Human Health in Vietnam: A Systematic Review and Additional Analyses on Current Impacts, Future Risk, and Adaptation, Lancet Reg Health West Pac, 40, 100943, 2023. doi: 10.1016/j.lanwpc.2023.100943.
Teasdale, N. & Panegyres, P.K., Climate Change in Western Australia and Its Impact on Human Health, The Journal of Climate Change and Health, 12, 100243, 2023. doi: 10.1016/j.joclim.2023.100243.
Ritchie, H., Rosado, P. & Roser, M., Emissions by Sector: Where Do Greenhouse Gases Come from?, 2020. https://ourworldindata.org/emissions-by-sector (January 7, 2024).
National Oceanic and Atmospheric Administration; ESRL, Average Carbon Dioxide (CO₂) Levels in the Atmosphere Worldwide from 1959 to 2022 (in Parts Per Million), 2023. https://www.statista.com/statistics/1091926/atmospheric-concentration-of-co2-historic/ (January 7, 2024).
Climate Science, Global Mean Surface Temperature Relative to 1880-1920, 2023. https://www.columbia.edu/~mhs119/Temperature/Table_Ts.1996-2023vs1880-1920.txt (January 7, 2024).
Kabeyi, M.J.B. & Olanrewaju, O.A., Sustainable Energy Transition for Renewable and Low Carbon Grid Electricity Generation and Supply, Front Energy Res, 9, 743144, 2022. doi: 10.3389/fenrg.2021.743114.
Zhang, Z. & Yang, Q., Technical Application of Green Construction and Energy Saving and Emission Reduction in Building Engineering, IOP Conf Ser Earth Environ Sci, 242, 062041, 2019. doi: 10.1088/1755-1315/242/6/062041.
Dewi, R.G., Siagian, U.W.R., Asmara, B., Anggraini, S.D., Ichihara, J. & Kobashi, T., Equitable, Affordable, and Deep Decarbonization Pathways for Low-Latitude Developing Cities by Rooftop Photovoltaics Integrated with Electric Vehicles, Appl Energy, 332, 120507, 2023. doi: 10.1016/j.apenergy.2022.120507.
Rathore, N., Panwar, N.L., Yettou, F. & Gama, A., A Comprehensive Review of Different Types of Solar Photovoltaic Cells and Their Applications, International Journal of Ambient Energy, 42, pp. 1200–1217, 2021. doi: 10.1080/01430750.2019.1592774.
Wohlgemuth, J., Solar Energy, Photovoltaic Cells, in: Kirk-Othmer Encyclopedia of Chemical Technology, Wiley, 2006. doi: 10.1002/0471238961.16081520070125.a01.pub2.
Roga, S., Bardhan, S., Kumar, Y. & Dubey, S.K., Recent Technology and Challenges of Wind Energy Generation: A Review, Sustainable Energy Technologies and Assessments, 52, 102239, 2022. doi: 10.1016/j.seta.2022.102239.
Olaofe, Z.O., Review of Energy Systems Deployment and Development of Offshore Wind Energy Resource Map at the Coastal Regions of Africa, Energy, 161, pp. 1096-1114, 2018. doi: 10.1016/j.energy.2018.07.185.
Karayel, G.K., Javani, N. & Dincer, I., Hydropower for Green Hydrogen Production in Turkey, Int J Hydrogen Energy, 48, pp. 22806–22817, 2023. doi: 10.1016/j.ijhydene.2022.04.084.
Mitrofanov, S.V., Sergeev, N.N., Zubova, N.V., Zhilnikova, M.M. & Matrenin, P.V., Options Analysis for the Use of Solar Generation Systems on the Territory of Hydropower Plants, in 2023 IEEE 24th International Conference of Young Professionals in Electron Devices and Materials (EDM), IEEE, 2023: pp. 1120-1124. doi: 10.1109/EDM58354.2023.10225051.
Tiwari, A.K., Chauhan, P.R., Pal, D.B. & Jana, S.K., Biomass Valorization as Energy Production Using Waste Biomass, in: Sustainable Valorization of Agriculture & Food Waste Biomass, pp. 29-50, 2023. doi: 10.1007/978-981-99-0526-3_2.
Devanshu, A., Mamta, S. & Brijendra, S., Challenges and Environmental Impacts of Biomass Energy in South Asia, Asian J Biotechnol Bioresour Technol, 5, pp. 1-12, 2019. doi: 10.9734/ajb2t/2019/v5i130050.
Azarpour, A., Suhaimi, S., Zahedi, G. & Bahadori, A., A Review on the Drawbacks of Renewable Energy as a Promising Energy Source of the Future, Arab J Sci Eng, 38, pp. 317-328, 2013. doi: 10.1007/s13369-012-0436-6.
Kurek, K.A., An Approach to Geothermal Resources as A Regional Development Driver in Poland, Humanities and Social Sciences Quarterly, 24, pp. 175-191, 2016. doi: 10.7862/rz.2016.hss.68.
Umar, M., Awosusi, A.A., Adegboye, O.R. & Ojekemi, O.S., Geothermal Energy and Carbon Emissions Nexus in Leading Geothermal-Consuming Nations: Evidence from Nonparametric Analysis, Energy & Environment, 0958305X2311539, 2023. doi: 10.1177/0958305X231153972.
Anderson, A. & Rezaie, B., Geothermal Technology: Trends and Potential Role in a Sustainable Future, Appl Energy, 248, pp. 18–34, 2019. doi: 10.1016/j.apenergy.2019.04.102.
Androniceanu, A., Sabie, O.M., Overview of Green Energy as a Real Strategic Option for Sustainable Development, Energies (Basel), 15, 8573, 2022. doi: 10.3390/en15228573.
Zhang, D. & Ma, C., Utilization of Tidal Current and Wave Energy Help the Implement of the Carbon Emissions Peak and Carbon Neutrality Strategy in China, IOP Conf Ser Earth Environ Sci, 983, 012055, 2022. doi: 10.1088/1755-1315/983/1/012055.
Corrales González, M.A., Lavidas, G., Besio, G., Feasibility of Wave Energy Harvesting in the Ligurian Sea, Proceedings of the European Wave and Tidal Energy Conference, 15, 197, 2023. doi: 10.36688/ewtec-2023-197.
Basu, R., Use of Ocean Sensors as Wave Power Generators, in: Şahin, S. (eds), 8th International Conference on Engineering, Project, and Product Management (EPPM 2017), pp. 23-29, 2018. doi: 10.1007/978-3-319-74123-9_3.
Inyada, E., Legal Framework for the Development of Nuclear Energy in Nigeria: Challenges and Prospects, SSRN Electronic Journal, 2021. doi: 10.2139/ssrn.3817922.
Yip, N.Y., Brogioli, D., Hamelers, H.V.M., Nijmeijer, K., Salinity Gradients for Sustainable Energy: Primer, Progress, and Prospects, Environ Sci Technol, 50, pp. 12072–12094, 2016. doi: 10.1021/acs.est.6b03448.
Hulme, A.M., Davey, C.J., Tyrrel, S., Pidou, M., McAdam, E.J., Scale-up of Reverse Electrodialysis for Energy Generation from High Concentration Salinity Gradients, J Memb Sci, 627, 119245, 2021. doi: 10.1016/j.memsci.2021.119245.
Essalhi, M., Avci, A.H., Lipnizki, F., Tavajohi, N., The Potential of Salinity Gradient Energy Based on Natural and Anthropogenic Resources in Sweden, Renew Energy, 215, 118984, 2023. doi: 10.1016/j.renene.2023.118984.
Feinberg, B.J., Ramon, G.Z. & Hoek, E.M.V., Scale-up Characteristics of Membrane-based Salinity-gradient Power Production, J Memb Sci, 476, pp. 311-320, 2015. doi: 10.1016/j.memsci.2014.10.023.
Talbanova, N., Bronnikov, O., Luchnikov, L., Satthy, H.R., Muratov, D., Gren, D., Tameev, A., Aleksandrov, A., Statnik, E.S., Somov, P.A., Sineva, M., Podgorny, D.A., Didenko, S., Saranin, D. & Di Carlo, A., The buffer – Free Semitransparent Perovskite Solar Cells with Ion-beam Sputtered Back Electrode, Sol Energy Mater Sol Cells, 266, 112683, 2024. doi: 10.1016/j.solmat.2023.112683.
Qin, Z., Zhang, Y. & Guo, J., SCAPS Simulation and DFT Study of Ultra-thin Lead-free Perovskite Solar Cells Based on RbGeI3, Opt Commun, 554, 130187, 2024. doi: 10.1016/j.optcom.2023.130187.
Singh, A., Verma, U.K. & Ameen, S., Optimization of Lead-free Materials-based Perovskite Solar Cell Using SCAPS-1D Simulation, J Phys Chem Solids, 186, 111817, 2024. doi: 10.1016/j.jpcs.2023.111817.
Hu, W., Yang, J., Yang, C., Xiao, X., Wang, C., Cui, Z., Gao, Q., Qi, J., Xia, M., Su, Y., Mei, A. & Han, H., Stabilizing Perovskite Precursors with the Reductive Natural Amino Acid for Printable Mesoscopic Perovskite Solar Cells, J Energy Chem, 90, pp. 32-39, 2024. doi: 10.1016/j.jechem.2023.10.022.
Chang, Q., An, Y., Cao, H., Pan, Y., Zhao, L., Chen, Y., We, Y., Tsang, S.-W., Yip, H.-L., Sun, L. & Yu, Z., Precursor Engineering Enables High-performance All-inorganic CsPbIBr2 Perovskite Solar Cells with a Record Efficiency Approaching 13%, J Energy Chem, 90, pp. 16-22, 2024. doi: 10.1016/j.jechem.2023.10.021.
Singh, N., Agarwal, A. & Agarwal, M., Highly Efficient Lead-free Ethyl Ammonium Substituted Perovskite Solar Cell Simulated Using SCAPS 1D, J Phys Chem Solids, 186, 111834, 2024. doi: 10.1016/j.jpcs.2023.111834.
Xiong, Y., Yi, Z., Zhang, W., Huang, Y., Zhang, Z., Jiang, Q., Ng, X.R., Shen, G., Luo, Y., Li, X. & Yang, J., Recent Advances in Perovskite/Cu(In,Ga)Se2 Tandem Solar Cells, Mater Today Electron, 7, 100086, 2024. doi: 10.1016/j.mtelec.2023.100086.
Huang, Y., Zhou, W., Zhong, H., Chen, W., Yu, G., Zhang, W., Wang, S., Sui, Y., Yang, X., Zhuang, Y., Tang, J., Cao, L., Müller-Buschbaum, P., Aierken, A., Han, P. & Tang, Z., Triethylsilane Introduced Precursor Engineering Towards Efficient and Stable Perovskite Solar Cells, Mater Today Adv, 21, 100449, 2024. doi: 10.1016/j.mtadv.2023.100449.
Salah, M.M., Saeed, A., Mousa, M., Abouelatta, M., Zekry, A., Shaker, A., Amer, F.Z., Mubarak, R.I. & Numerical Analysis of Carbon-based Perovskite Tandem Solar Cells: Pathways towards High Efficiency and Stability, Renew Sustain Energy Rev, 189, 114041, 2024. doi: 10.1016/j.rser.2023.114041.
Razi, A., Safdar, A. & Irfan, R., Enhancing Tandem Solar Cell’s Efficiency through Convolutional Neural Network-Based Optimization of Metasurfaces, Mater Des, 236, 112475, 2023. doi: 10.1016/j.matdes.2023.112475.
Li, Y., Sai, H., McDonald, C., Xu, Z., Kurokawa, Y., Usami, N. & Matsui, T., Nanoscale Size Control of Si Pyramid Texture for Perovskite/Si Tandem Solar Cells Enabling Solution-Based Perovskite Top-Cell Fabrication and Improved Si Bottom-Cell Response, Adv Mater Interfaces, 10, 202300504, 2023. doi: 10.1002/admi.202300504.
Basher, H., Zulkifli, M.N., Jalar, A. & Daenen, M., Effect of Ultrasonic Bonding Parameters on the Contact Resistance and Bondability Performances of CIGS Thin Film Photovoltaic Solar Panel, IEEE J Photovolt, 11, pp. 345-353, 2021. doi: 10.1109/JPHOTOV.2020.3047295.
Srivastava, S., Karthikeyan, S., Arumugam, P., Kumar, A. & Thanigaivel, G., Design, Development and Experimental Investigation on the Effect of HVAC Power Consumption in Electric Vehicle Integrated with Thin Film Solar PV Panels, SAE Technical Papers, 28, 0234, 2021. doi: 10.4271/2021-28-0234.
Su, L.C., Ruan, H.D., Ballantine, D.J., Lee, C.H. & Cai, Z.W., Release of Metal Pollutants from Corroded and Degraded Thin-Film Solar Panels Extracted by Acids and Buried in Soils, Appl Geochem, 108, 104381, 2019. doi: 10.1016/j.apgeochem.2019.104381.
Bartosinski, M., Michaelis, D. & Friedrich, B., Separation of Semiconductor Layers from Thin Film Solar Panels Using Microwave Radiation, Proceedings - European Metallurgical Conference, EMC 2015, pp. 715–724, 2015.
Seo, J.-W., Choi, S.-W., Kim, Y., Kwon, S.-H. & Kwon, J.-D., Surface Modification of Color-Clarifying Layer in Transparent Conductive Oxide Based Distributed Bragg Reflector-Diffuser Electrode for Building-Integrated Photovoltaics, Solar Energy, 263, 111924, 2023. doi: 10.1016/j.solener.2023.111924.
Kim, S. & Kim, S., Economic Feasibility Comparison Between Building-Integrated Photovoltaics and Green Systems in Northeast Texas, Energies (Basel), 16, 4672, 2023. doi: 10.3390/en16124672.
Shono, K., Yamaguchi, Y., Perwez, U., Ma, T., Dai, Y. & Shimoda, Y., Large-scale Building-integrated Photovoltaics Installation on Building Façades: Hourly Resolution Analysis Using Commercial Building Stock in Tokyo, Japan, Solar Energy, 253, pp. 137-153, 2023. doi: 10.1016/j.solener.2023.02.025.
Charalambous, C., Heracleous, C., Michael, A. & Efthymiou, V., Hybrid AC-DC Distribution System for Building Integrated Photovoltaics and Energy Storage Solutions for Heating-Cooling Purposes. A Case Study of a Historic Building in Cyprus, Renew Energy, 216, 119032, 2023. doi: 10.1016/j.renene.2023.119032.
Yue, W., Yang, H., Cai, H., Xiong, Y., Zhou, T., Liu, Y., Zhao, J., Huang, F., Cheng, Y.-B. & Zhong, J., Printable High-Efficiency and Stable FAPbBr3 Perovskite Solar Cells for Multifunctional Building-Integrated Photovoltaics, Advanced Materials, 35, 2301548, 2023. doi: 10.1002/adma.202301548.
Yang, Z. & Xiao, Z., A Review of the Sustainable Development of Solar Photovoltaic Tracking System Technology, Energies (Basel), 16, 16237768, 2023. doi: 10.3390/en16237768.
Joe, J., Park, J., Choi, H., Park, Y., Oh, J. & Kwak, Y., Economic Applicability of Solar Tracking Photovoltaic Systems in Commercial Buildings: Case Study in South Korean Climate, Energies (Basel), 16, 16217338, 2023. doi: 10.3390/en16217338.
Lehtola, T., Solar Energy and Wind Power Supply Supported by Battery Storage and Vehicle to Grid Operations, Electric Power Systems Research, 228, 110035, 2024. doi: 10.1016/j.epsr.2023.110035.
Sipra, A.T., Azeem, F., Memon, Z.A., Baig, S. & Jaffery, M.H., Design and Assessment of Energy Management Strategy on Rail Coaches Using Solar PV and Battery Storage to Reduce Diesel Fuel Consumption, Energy, 288, 129718, 2024. doi: 10.1016/j.energy.2023.129718.
G.A. Thopil, C.E. Sachse, J. Lalk, M.S. Thopil, Techno-Economic Performance Comparison of Crystalline and Thin Film PV Panels under Varying Meteorological Conditions: A High Solar Resource Southern Hemisphere Case, Appl Energy 275 (2020). https://doi.org/10.1016/j.apenergy.2020.115041.
Zhang, Z.-Y., He, Y., Wang, Z., Xu, J., Xie, M., Tao, P., Ji, D., Moth-Poulsen, K. & Li, T., Photochemical Phase Transitions Enable Coharvesting of Photon Energy and Ambient Heat for Energetic Molecular Solar Thermal Batteries that Upgrade Thermal Energy, J Am Chem Soc, 142, pp. 12256–12264, 2020. doi: 10.1021/jacs.0c03748.
Zheng, N., Zhang, H., Duan, L., Wang, Q., Bischi, A. & Desideri, U., Techno-economic Analysis of a Novel Solar-driven PEMEC-SOFC-based Multi-generation System Coupled Parabolic Trough Photovoltaic Thermal Collector and Thermal Energy Storage, Appl Energy, 331, 120400, 2023. doi: 10.1016/j.apenergy.2022.120400.
Cao, Y., Weng, M., Mahmoud, M.H.H., Elnaggar, A.Y., Zhang, L., El Azab, I.H., Chen, Y., Huang, M., Huang, J. & Sheng, X., Flame-retardant and Leakage-proof Phase Change Composites Based on MXene/Polyimide Aerogels Toward Solar Thermal Energy Harvesting, Adv Compos Hybrid Mater, 5, pp. 1253–1267, 2022. doi: 10.1007/s42114-022-00504-4.
Kumar, K.H., Daabo, A.M., Karmakar, M.K. & Hirani, H., Solar Parabolic Dish Collector for Concentrated Solar Thermal Systems: A Review and Recommendations, Environ Sci Pollution Res, 29, pp. 32335–32367, 2022. doi: 10.1007/ doi: s11356-022-18586-4.
Koçak, B. & Paksoy, H., Numerical Analysis of Demolition Waste-Based Thermal Energy Storage System for Concentrated Solar Power Plants, Energy Storage, 2024. doi: 10.1002/est2.560.
Ramón-Álvarez, I. Sánchez-Delgado, S., Peralta, I., Caggiano, A. & Torres-Carrasco, M., Experimental and Computational Optimization of Eco-Friendly Mortar Blocks for High Temperature Thermal Energy Storage of Concentrated Solar Power Plants, J Energy Storage, 71, 2023. doi: 10.1016/j.est.2023.108076.
Farag, W.A., Accurate Wind Energy Harvest Assessment Using a Comprehensive Ultra-Large-Wind-Turbine Emulation, Journal of Engineering Research 11, pp. 123-133, 2023. doi: 10.1016/j.jer.2023.100096.
Farag, W.A., Hemeida, A.M &. Mahgoub, O.A., A Comprehensive Large-Wind-Turbine Emulator for Accurate Wind-Energy Harvest Evaluation, Journal of Electrical Engineering & Technology, 2023. doi: 10.1007/s42835-023-01581-1.
Bianchini, A., Ferrara, G. & Ferrari, L., Design Guidelines for H-Darrieus Wind Turbines: Optimization of the Annual Energy Yield, Energy Convers Manag, 89, pp. 690-707, 2015. doi: 10.1016/j.enconman.2014.10.038.
Zhang, Z., Kuang, L., Zhao, Y., Han, Z., Zhou, D., Tu, J., Chen, M. & Ji, X., Numerical Investigation of the Aerodynamic and Wake Characteristics of a Floating Twin-rotor Wind Turbine Under Surge Motion, Energy Convers Manag, 283, 116957, 2023. doi: 10.1016/j.enconman.2023.116957.
Yilmaz, O., Low-speed, Low Induction Multi-blade Rotor for Energy Efficient Small Wind Turbines, Energy, 282, 128607, 2023. doi: 10.1016/j.energy.2023.128607.
Yossri, W., Ben Ayed, S. & Abdelkefi, A., Evaluation of the Efficiency of Bioinspired Blade Designs for Low-speed Small-scale Wind Turbines with the Presence of Inflow Turbulence Effects, Energy, 273, 127210, 2023. doi: 10.1016/j.energy.2023.127210.
Wilberforce, T., Olabi, A.G., Sayed, E.T., Alalmi, A.H. & Abdelkareem, M.A., Wind Turbine Concepts for Domestic Wind Power Generation at Low Wind Quality Sites, J Clean Prod, 394, 136137, 2023. doi: 10.1016/j.jclepro.2023.136137.
Tandel, R., Shah, S. & Tripathi, S., A State-of-art Review on Bladeless Wind Turbine, J Phys Conf Ser, 1950, 012058, 2021. doi: 10.1088/1742-6596/1950/1/012058.
Sudarshan, T., Bhavya, P., Manjesh, B.C., Kavithanjan, K., Krishna, R.A., Mahantesh, D. & Vakayil, J., A Renovative Design and Fabrication of Vortex Bladeless Windmill, J Phys Conf Ser, 2426, 012059, 2023. doi: 10.1088/1742-6596/2426/1/012059.
Hamdan, H., Dol, S.S., Gomaa, A.H., Al Tahhan, A.B., Al Ramahi, A., Turkmani, H.F., Alkhedher, M. & Ajaj, R., Experimental and Numerical Study of Novel Vortex Bladeless Wind Turbine with an Economic Feasibility Analysis and Investigation of Environmental Benefits, Energies (Basel), 17, 214, 2023. doi: 10.3390/en17010214.
Ramezani, M., Choe, D.-E., Heydarpour, K. & Koo, B., Uncertainty Models for the Structural Design of Floating Offshore Wind Turbines: A Review, Renew Sustain Energy Rev, 185, 113610, 2023. doi: 10.1016/j.rser.2023.113610.
Krzemianowski, Z. & Kaniecki, M., Low-head High Specific Speed Kaplan Turbine for Small Hydropower – Design, CFD Loss Analysis and Basic, Cavitation and Runaway Investigations: A Case Study, Energy Convers Manag, 276, 116558, 2023. doi: 10.1016/j.enconman.2022.116558.
Chaulagain, R.K., Poudel, L. & Maharjan, S., A Review on Non-conventional Hydropower Turbines and Their Selection for Ultra-low-head Applications, Heliyon, 9, e17753, 2023. doi: 10.1016/j.heliyon.2023.e17753.
Seman, H. & Gözen, E., Emerging Innovative Technologies and Materials in Hydropower Sector: A Review, Int J Eng Appl Physics, 3, pp. 600–611, 2023.
Raja Singh, R., Raj Chelliah, T. & Agarwal, P., Power Electronics in Hydro Electric Energy Systems – A Review, Renew Sustain Energy Rev, 32, pp. 944-959, 2014. doi: 10.1016/j.rser.2014.01.041.
Reigstad, T.I. & Uhlen, K., Variable Speed Hydropower Conversion and Control, IEEE Transactions on Energy Conversion, 35, pp. 386–393, 2020. doi: 10.1109/TEC.2019.2943233.
Gao, J., Dai, L., Liu, X., Du, X., Luo, D. & Huang, S., Variable-Speed Hydropower Generation: System Modeling, Optimal Control, and Experimental Validation, IEEE Transactions on Industrial Electronics, 68, pp. 10902–10912, 2021. doi: 10.1109/TIE.2020.3031528.
Subedi, M.N., Bharadwaj, B. & Rafiq, S., Who Benefits from the Decentralised Energy System (DES)? Evidence from Nepal’s Micro-hydropower (MHP), Energy Econ, 120, 106592, 2023. doi: 10.1016/j.eneco.2023.106592.
Deshamukhya, T. & Choubey, G., Prospects of Micro-hydropower Plants in Northeast India: A Brief Review, Int J Energy Water Resources, 7, pp. 297–308, 2023. doi: 10.1007/s42108-022-00197-x.
Brown, E., Sulaeman, S., Quispe-Abad, R., Müller, N. & Moran, E., Safe Passage for Fish: The Case for In-stream Turbines, Renew Sustain Energy Rev, 173, 113034, 2023. doi: 10.1016/j.rser.2022.113034.
Knott, J., Mueller, M., Pander, J. & Geist, J., Downstream Fish Passage at Small-scale Hydropower Plants: Turbine or Bypass?, Front Environ Sci, 11, 1168473, 2023. doi: 10.3389/fenvs.2023.1168473.
Nestler, J.M., Gosselin, M., Optimal Approach for Upstream Fish Passage Design: One‐size‐fits‐all or Made‐to‐order?, River Res Appl, 39, pp. 1994-2008, 2023. doi: 10.1002/rra.4208.
Pérez-Díaz, J.I., Chazarra, M., García-González, J., Cavazzini, G., Stoppato, A., Trends and Challenges in the Operation of Pumped-storage Hydropower Plants, Renew Sustain Energy Rev, 44, pp. 767-784, 2015. doi: 10.1016/j.rser.2015.01.029.
Bayazıt, Y., Bakış, R., Koç, C., A Study on Transformation of Multi-purpose Dams into Pumped Storage Hydroelectric Power Plants by Using GIS Model, Int J Green Energy, 18, pp. 308-318, 2021. doi: 10.1080/15435075.2020.1865362.
Bragalli, C., Micocci, D., Naldi, G., On the Influence of Net Head and Efficiency Fluctuations over the Performance of Existing Run-of-river Hydropower Plants, Renew Energy, 206, pp. 1170-1179, 2023. doi: 10.1016/j.renene.2023.02.081.
Temel, P., Kentel, E. & Alp, E., Development of a Site Selection Methodology for Run-of-river Hydroelectric Power Plants within the Water-energy-ecosystem Nexus, Sci Total Environ, 856, 159152, 2023. doi: 10.1016/j.scitotenv.2022.159152.
Tsuanyo, D., Amougou, B., Aziz, A., Nka Nnomo, B., Fioriti, D. & Kenfack, J., Design Models for Small Run-of-river Hydropower Plants: A Review, Sustain Energy Res, 10, 3, 2023. doi: 10.1186/s40807-023-00072-1.
Cavelius, P., Engelhart-Straub, S., Mehlmer, N., Lercher, J., Awad, D. & Brück, T., The Potential of Biofuels from First to Fourth Generation, PLoS Biol, 21, e3002063, 2023. doi: 10.1371/journal.pbio.3002063.
Mat Aron, N.S., Khoo, K.S., Chew, K.W., Show, P.L., Chen, W., Nguyen, T.H.P., Sustainability of the Four Generations of Biofuels – A Review, Int J Energy Res, 44, pp. 9266-9282, 2020. doi: 10.1002/er.5557.
Singh, A., Prajapati, P., Vyas, S., Gaur, V.K., Sindhu, R., Binod, P., Kumar, V., Singhania, R.R., Awasthi, M.K., Zhang, Z. & Varjani, S., A Comprehensive Review of Feedstocks as Sustainable Substrates for Next-Generation Biofuels, Bioenergy Res, 16, pp. 105–122, 2023. doi: 10.1007/s12155-022-10440-2.
Liu, F., Wu, W., Tran-Gyamfi, M.B., Jaryenneh, J.D., Zhuang, X. & Davis, R.W., Bioconversion of Distillers’ Grains Hydrolysates to Advanced Biofuels by an Escherichia coli Co-culture, Microb Cell Fact, 16, 192, 2017. doi: 10.1186/s12934-017-0804-8.
Dossow, M., Klüh, D., Umeki, K., Gaderer, M., Spliethoff, H. & Fendt, S., Electrification of Gasification-based Biomass-to-X Processes – A Critical Review and In-depth Assessment, Energy Environ Sci, 17, pp. 925-973, 2024. doi: 10.1039/D3EE02876C.
Fu, C., Wang, J., Shen, Q., Cui, Z. & Ding, S., Determining the Optimal Biomass-gasification-based Fuel Cell Trigeneration System in Exergy-based Cost and Carbon Footprint Method Considering Energy Level, Energy Convers Manag, 299, 117802, 2024. doi: 10.1016/j.enconman.2023.117802.
Xin, Y., Xing, X., Li, X. & Hong, H., A Biomass–Solar Hybrid Gasification System by Solar Pyrolysis and PV– Solid Oxide Electrolysis Cell for Sustainable Fuel Production, Appl Energy, 356, 122419, 2024. doi: 10.1016/j.apenergy.2023.122419.
Tahir, F., Saeed, M.A. & Ali, U., Biomass Energy Perspective in Pakistan Based on Chemical Looping Gasification for Hydrogen Production and Power Generation, Int J Hydrogen Energy, 48, pp. 18211-18232, 2023. doi: 10.1016/j.ijhydene.2023.01.247.
Roy, R., Bandi, S., Li, X., Schooff, B., Kuttler, R., Aichele, M., Montgomery, S., Tuttle, J., Smith, S.J., Wendt, J.O.L., Iverson, B.D. & Fry, A., Synergistic Reduction of SO2 Emissions While Co-firing Biomass with Coal in Pilot-scale (1.5 MWth) and Full-scale (471 MWe) Combustors, Fuel, 358, 130191, 2024. doi: 10.1016/j.fuel.2023.130191.
Chen, X., Zhang, C., Chen, X., Peng, Z., Gao, H. & Gong, X., Performance Analysis of a Novel Biomass Gasification System Coupled to a Coal-fired Power Plant Based on Heat and Water Recovery, Energy Convers Manag, 299, 117822, 2024. doi: 10.1016/j.enconman.2023.117822.
Narayanan, M., Promising Biorefinery Products from Marine Macro and Microalgal Biomass: A Review, Renew Sustain Energy Rev, 190, 114081, 2024. doi: 10.1016/j.rser.2023.114081.
Wang, X., Zhang, Y., Xia, C., Alqahtani, A., Sharma, A. & Pugazhendhi, A., A Review on Optimistic Biorefinery Products: Biofuel and Bioproducts from Algae Biomass, Fuel, 338, 127378, 2023. doi: 10.1016/j.fuel.2022.127378.
Adetunji, A.I., Oberholster, P.J. & Erasmus, M., From Garbage to Treasure: A Review on Biorefinery of Organic Solid Wastes into Valuable Biobased Products, Bioresour Technol Rep, 24, 101610, 2023. doi: 10.1016/j.biteb.2023.101610.
Sarker, T.R., Nanda, S., Meda, V. & Dalai, A.K., Densification of Waste Biomass for Manufacturing Solid Biofuel Pellets: A Review, Environ Chem Lett, 21, pp. 231–264, 2023. doi: 10.1007/s10311-022-01510-0.
Sarker, T.R., Nanda, S., Dalai, A.K. & Meda, V., A Review of Torrefaction Technology for Upgrading Lignocellulosic Biomass to Solid Biofuels, Bioenergy Res, 14, pp. 645–669, 2021. doi: 10.1007/s12155-020-10236-2.
Olugbade, T.O. & Ojo, O.T., Biomass Torrefaction for the Production of High-Grade Solid Biofuels: A Review, Bioenergy Res, 13, 999–1015, 2020. doi: 10.1007/s12155-020-10138-3.
Rezaei, M., Sameti, M. & Nasiri, F., An Enviro-economic RAM-based Optimization of Biomass-driven Combined Heat and Power Generation, Biomass Convers Biorefin, 2023. doi: 10.1007/s13399-023-04713-9.
Ma, Y., Tian, H., Cheng, H., Jiang, F. & Yang, Y., The Economic Feasibility and Life Cycle Carbon Emission of Developing Biomass-based Renewable Combined Heat and Power (RCHP) Systems, Fuel, 353, 129177, 2023. doi: 10.1016/j.fuel.2023.129177.
Lin, W., Wang, G., Gan, H., Zhang, S., Zhao, Z., Yue, G. & Long, X., Heat Source Model for Enhanced Geothermal Systems (EGS) under Different Geological Conditions in China, Gondwana Research, 122, pp. 243–259, 2023. doi: 10.1016/j.gr.2022.08.007.
Sun, Y., Zhang, X., Li, X. & Cheng, R., Study on the Intrinsic Mechanisms Underlying Enhanced Geothermal System (EGS) Heat Transfer Performance Differences in Multi-wells, Energy Convers Manag, 292, 117361, 2023. doi: 10.1016/j.enconman.2023.117361.
Xue, Z., Yao, S., Ma, H., Zhang, C., Zhang, K. & Chen, Z., Thermo-economic Optimization of an Enhanced Geothermal System (EGS) Based on Machine Learning and Differential Evolution Algorithms, Fuel, 340, 127569, 2023. doi: 10.1016/j.fuel.2023.127569.
Yilmaz, F., Ozturk, M. & Selbaş, R., Proposed and Assessment of a Sustainable Multigeneration Plant Combined with a Transcritical CO2 Cycle Operated by Flash-binary Geothermal Energy, Int J Hydrogen Energy, 48, pp.22818-22833, 2023. doi: 10.1016/j.ijhydene.2022.11.078.
Boukelia, T.E., Arslan, O., Djimli, S. & Kabar, Y., ORC Fluids Selection for a Bottoming Binary Geothermal Power Plant Integrated with a CSP Plant, Energy, 265, 126186, 2023. doi: 10.1016/j.energy.2022.126186.
Pratama, H.B. & Koike, K., Thermodynamic Model-based Specification of Optimal Geothermal Power Generation System for High-temperature Liquid-dominated Systems Using Flash and Flash-binary Cycles, Renew Energy, 220, 119634, 2024. doi: 10.1016/j.renene.2023.119634.
Boahen, S., Anka, S.K., Ohm, T.I., Cho, Y., Choi, J.W., Kim, H.-Y. & Choi, J.M., Capacity Control of a Cascade Multi-purpose Heat Pump Using Variable Speed Compressor, Renew Energy, 205, pp.945-955, 2023. doi: 10.1016/j.renene.2023.02.002.
Battaglia, V., Vanoli, L., Verde, C., Nithiarasu, P. & Searle, J.R., Dynamic Modelling of Geothermal Heat Pump System Coupled with Positive-energy Building, Energy, 284, 128557, 2023. doi: 10.1016/j.energy.2023.128557.
Mahia, C.R., Rabanal, F.P.Á., Coupe, S.J. & Fontaneda, L.Á.S., The Role of Geothermal Heat Pump Systems in the Water–Energy Nexus, in: Borge-Diez, D., Rosales-Asensio, E., (eds)., Geothermal Heat Pump Systems, pp. 185-215, 2023. doi: 10.1007/978-3-031-24524-4_7.
Liu, S. & Dahi Taleghani, A., Analysis of an Enhanced Closed-loop Geothermal System, Geoenergy Sci Eng, 231, 212296, 2023. doi: 10.1016/j.geoen.2023.212296.
White, M., Vasyliv, Y., Beckers, K., Martinez, M., Balestra, P., Parisi, C., Augustine, C., Bran-Anleu, G., Horne, R., Pauley, L., Bettin, G., Marshall, T. & Bernat, A., Numerical Investigation of Closed-loop Geothermal Systems in Deep Geothermal Reservoirs, Geothermics, 116, 102852, 2024. doi: 10.1016/j.geothermics.2023.102852.
Xiao, D., Liu, M., Li, L., Cai, X., Qin, S., Gao, R., Liu, J., Liu, X., Tang, H. & Li, G., Model for Economic Evaluation of Closed-loop Geothermal Systems Based on Net Present Value, Appl Therm Eng, 231, 121008, 2023. doi: 10.1016/j.applthermaleng.2023.121008.
Walker, S. & Thies, P.R., A Review of Component and System Reliability in Tidal Turbine Deployments, Renew Sustain Energy Rev, 151, 111495, 2021. doi: 10.1016/j.rser.2021.111495.
Nachtane, M., Tarfaoui, M., Goda, I., Rouway, M., A Review on the Technologies, Design Considerations and Numerical Models of Tidal Current Turbines, Renew Energy, 157, pp. 1274-1288, 2020. doi: 10.1016/j.renene.2020.04.155.
Han, M., Cao, F., Shi, H., Kou, H., Gong, H. & Wang, C., Parametrical Study on an Array of Point Absorber Wave Energy Converters, Ocean Engineering, 272, 113857, 2023. doi: 10.1016/j.oceaneng.2023.113857.
He, F., Lin, Y., Pan, J. & Wei, M., Experimental Investigation of Vortex Evolution around Oscillating Water Column Wave Energy Converter Using Particle Image Velocimetry, Physics of Fluids, 35, 015151, 2023. doi: 10.1063/5.0135927.
Wang, J., Wang, S., Jiang, Q., Xu, Y. & Shi, W., Effect of Different Raft Shapes on Hydrodynamic Characteristics of the Attenuator-Type Wave Energy Converter, China Ocean Engineering, 37, pp. 645–659, 2023. doi: 10.1007/s13344-023-0055-x.
Edwards, E.C., Holcombe, A., Brown, S., Ransley, E., Hann, M. & Greaves, D., Evolution of Floating Offshore Wind Platforms: A Review of At-sea Devices, Renew Sustain Energy Rev, 183, 113416, 2023. doi: 10.1016/j.rser.2023.113416.
Chen, M., Xiao, P., Zhou, H., Li, C.B. & Zhang, X., Fully Coupled Analysis of an Integrated Floating Wind-Wave Power Generation Platform in Operational Sea-States, Front Energy Res, 10, 931057, 2022. doi: 10.3389/fenrg.2022.931057.
Zhang, X., Li, B., Hu, Z., Deng, J., Xiao, P. & Chen, M., Research on Size Optimization of Wave Energy Converters Based on a Floating Wind-Wave Combined Power Generation Platform, Energies (Basel), 15, 8681, 2022. doi: 10.3390/en15228681.
He, G., Liu, C., Zhang, W., Luan, Z. & Zhang, Z., Numerical Study of the Effect of Central Platform Motion on the Wave Energy Converter Array, Ocean Engineering, 286, 115483, 2023. doi: 10.1016/j.oceaneng.2023.115483.
Zhao, X., Xue, F., Chen, L., Göteman, M., Han, D., Geng, J. & Sun, S., Hydrodynamic Analysis of a Floating Platform Coupled with an Array of Oscillating Bodies, Ocean Eng, 287, 115439, 2023. doi: 10.1016/j.oceaneng.2023.115439.
Zarębski, P. & Katarzyński, D., Small Modular Reactors (SMRs) as a Solution for Renewable Energy Gaps: Spatial Analysis for Polish Strategy, Energies (Basel), 16, 6491, 2023. doi: 10.3390/en16186491.
Soler, A.V., The Future of Nuclear Energy and Small Modular Reactors, in: Letcher, T.M. (Ed.), Living with Climate Change, Elsevier, pp. 465-512, 2024. doi: 10.1016/B978-0-443-18515-1.00012-5.
Schlegel, J.P. & Bhowmik, P.K., Small Modular Reactors, in: Wang, J., Talabi, S., y Leon, S.B. (Eds.), Nuclear Power Reactor Designs, Academic Press, pp. 283–308, 2024. doi: 10.1016/B978-0-323-99880-2.00014-X.
Nie, B., Fusion Reactors, in: J. Wang, S. Talabi, S.B. y Leon (Eds.), Nuclear Power Reactor Designs, Academic Press, pp. 391–427, 2024. doi: 10.1016/B978-0-323-99880-2.00018-7.
Sadik-Zada, E.R., Gatto, A. & Weißnicht, Y., Back to the Future: Revisiting the Perspectives on Nuclear Fusion and Juxtaposition to Existing Energy Sources, Energy, 290, 129150, 2024. doi: 10.1016/j.energy.2023.129150.
Lerede, D., Nicoli, M., Savoldi, L. & Trotta, A., Analysis of the Possible Contribution of Different Nuclear Fusion Technologies to the Global Energy Transition, Energy Strategy Rev, 49, 101144, 2023. doi: 10.1016/j.esr.2023.101144.
Yoon, D.-H. & Reimanis, I.E., A Review on the Joining of SiC for High-Temperature Applications, J Korean Ceramic Soc, 57, pp. 246–270, 2020. doi: 10.1007/s43207-020-00021-4.
Binner, J., Porter, M., Baker, B., Zou, J., Venkatachalam, V., Diaz, V.R., D’Angio, A., Ramanujam, P., Zhang, T., Murthy & T.S.R.C., Selection, Processing, Properties, and Applications of Ultra-High Temperature Ceramic Matrix Composites, UHTCMCs – A Review, Int Mater Rev, 65, pp. 389–444, 2020. doi: 10.1080/09506608.2019.1652006.
Cheng, Z., Sun, J., Gao, X., Wang, Y., Cui, J., Wang, T. & Chang, H., Irradiation Effects in High-Entropy Alloys and Their Applications, J Alloys Compd, 930, 166768, 2023. doi: 10.1016/j.jallcom.2022.166768.
Moschetti, M., Burr, P.A., Obbard, E., Kruzic, J.J., Hosemann, P. & Gludovatz, B., Design Considerations for High Entropy Alloys in Advanced Nuclear Applications, J Nucl Mater, 567, 153814, 2022. doi: 10.1016/j.jnucmat.2022.153814.
Yüksel, S., Dinçer, H., Çağlayan, Ç., Mikhaylov, A. & Yavuz, D., Evaluating the Advantages and Disadvantages of Thorium-Based Nuclear Power Plants, in: Dinçer, H., Yüksel, S., (eds.), Renewable Energy Investments for Sustainable Business Projects, Emerald Publishing Limited, pp. 165–175, 2023. doi: 10.1108/978-1-80382-883-120231013.
Galahom, A.A., Khaliil, A.S., Alnassar, N. & Reda, S.M., Discussing the Possibility of Using Thorium-Based Fuels as an Alternative Fuel to Uranium Dioxide Fuel for APR-1400 Reactor, Nucl Eng Design, 417, 112817, 2024. doi: 10.1016/j.nucengdes.2023.112817.
Zeng, Y., Zhang, Q., Deng, K. & Liu, W., A Simulation Study of Tritium Distribution in a 10WM(e) Thorium-Based Molten Salt Reactor, Ann Nucl Energy, 197, 110272, 2024. doi: 10.1016/j.anucene.2023.110272.
Holdsworth, A.F., Eccles, H., Sharrad, C.A. & George, K., Spent Nuclear Fuel—Waste or Resource? The Potential of Strategic Materials Recovery during Recycle for Sustainability and Advanced Waste Management, Waste, 1, pp. 249–263, 2023. doi: 10.3390/waste1010016.
Kadadou, D., Said, E.A., Ajaj, R. & Hasan, S.W., Research Advances in Nuclear Wastewater Treatment Using Conventional and Hybrid Technologies: Towards Sustainable Wastewater Reuse and Recovery, J Water Process Eng, 52, 103604, 2023. doi: 10.1016/j.jwpe.2023.103604.
Zhang, Y., Mir, A.H., A Review of Brannerite Structured Materials for Nuclear Waste Management, J Nucl Mater, 583, 154512, 2023. doi: 10.1016/j.jnucmat.2023.154512.
Zhang, X., Pu, N., Cai, H., Jia, H. & He, Y., Strategies of Eliminating Nuclear Waste Using Accelerator-driven System in the Transition Stage for Sustainable and Clean Nuclear Energy in China, Ann Nucl Energy, 185, 109713, 2023. doi: 10.1016/j.anucene.2023.109713.
Abram, T. & Ion, S., Generation-IV Nuclear Power: A Review of the State of the Science, Energy Policy, 36, pp. 4323–4330, 2008. doi: 10.1016/j.enpol.2008.09.059.
Fernández-Arias, P., Vergara, D. & Antón-Sancho, Á., Bibliometric Review and Technical Summary of PWR Small Modular Reactors, Energies (Basel), 16, 5168, 2023. doi: 10.3390/en16135168.
Rahman, S.N., Saleem, H. & Zaidi, S.J., Progress in Membranes for Pressure Retarded Osmosis Application, Desalination, 549, 116347, 2023. doi: 10.1016/j.desal.2022.116347.
Wenten, I.G., Khoiruddin, K., Reynard, R., Lugito, G. & Julian, H., Advancement of Forward Osmosis (FO) Membrane for Fruit Juice Concentration, J Food Eng, 290, 110216, 2021. doi: 10.1016/j.jfoodeng.2020.110216.
Shi, Y., Zhang, M., Zhang, H., Yang, F., Tang, C.Y., Dong, Y., Recent Development of Pressure Retarded Osmosis Membranes for Water and Energy Sustainability: A Critical Review, Water Res, 189, 116666, 2021. doi: 10.1016/j.watres.2020.116666.
Su, Z., Malankowska, M., Thostrup, T.M., DeMartini, M., Khajavi, P., Guo, H., Pedersen, L.S. & Pinelo, M., Comparison of 2D and 3D Materials on Membrane Modification for Improved Pressure Retarded Osmosis (PRO) Process, Chem Eng Sci, 285, 119638, 2024. doi: 10.1016/j.ces.2023.119638.
Moon, S.J., Lee, S.M., Kim, J.H., Park, S.H., Wang, H.H., Kim, J.H. & Lee, Y.M., A Highly Robust and Water Permeable Thin Film Composite Membranes for Pressure Retarded Osmosis Generating 26 W·m−2 at 21 bar, Desalination, 483, 114409, 2020. doi: 10.1016/j.desal.2020.114409.
Al-Zainati, N., Ibrar, I., Altaee, A., Subbiah, S. & Zhou, J., Multiple Staging of Pressure Retarded Osmosis: Impact on the Energy Generation, Desalination, 573, 117199, 2024. doi: 10.1016/j.desal.2023.117199.
Li, D., Mo, Z. & She, Q., Comparison of Energy Efficiency between Atmospheric Batch Pressure-Retarded Osmosis and Single-Stage Pressure-Retarded Osmosis, Membranes (Basel), 13, 354, 2023. doi: 10.3390/membranes13030354.
Abdelkader, B.A., Navas, D.R., Sharqawy, M.H., A Novel Spiral Wound Module Design for Harvesting Salinity Gradient Energy Using Pressure Retarded Osmosis, Renew Energy, 203, pp. 542-553, 2023. doi: 10.1016/j.renene.2022.12.073.
Tagliavini, M. & Babler, M.U., Simulation of Spiral-wound Pressure Retarded Osmosis for Harvesting Osmotic Power: Module-level Modeling and Implications of Feed Pre-treatment, Desalination, 574, 117184, 2024. doi: 10.1016/j.desal.2023.117184.
Lee, S., Park, T., Park, Y.-G., Lee, W., Kim, S.-H., Toward Scale-up of Seawater Reverse Osmosis (SWRO) – Pressure Retarded Osmosis (PRO) Hybrid System: A Case Study of a 240 m3/day Pilot Plant, Desalination, 491, 114429, 2020. doi: 10.1016/j.desal.2020.114429.
Ju, J., Choi, Y., Lee, S. & Park, Y.-G., Comparison of Different Pretreatment Methods for Pressure Retarded Osmosis (PRO) Membrane in Bench-Scale and Pilot-Scale Systems, Desalination, 496, 114528, 2020. doi: 10.1016/j.desal.2020.114528.
Han, J.-H., Hwang, K.-S., Jeong, H., Byeon, S.-Y., Nam, J.-Y., Kim, C.-S., Kim, H., Yang, S.C., Choi, J.Y. & Jeong, N., Electrode System for Large-Scale Reverse Electrodialysis: Water Electrolysis, Bubble Resistance, and Inorganic Scaling, J Appl Electrochem, 49, pp. 517–528, 2019. doi: 10.1007/s10800-019-01303-4.
Kim, H., Kim, Y.-E., Jeong, N.-J., Hwang, K.-S., Han, J.-H., Nam, J.-Y., Jwa, E., Nam, S.-C., Park, S.-Y., Yoon, Y.-I. & Kim, C.-S., Innovative Reverse-Electrodialysis Power Generation System for Carbon Capture and Utilization, J CO2 Util, 20, pp. 312–317, 2017. doi: 10.1016/j.jcou.2017.05.025.
Abidin, M.N.Z., Nasef, M.M. & Veerman, J., Towards the Development of New Generation of Ion Exchange Membranes for Reverse Electrodialysis: A Review, Desalination, 537, 115854, 2022. doi: 10.1016/j.desal.2022.115854.
Jang, J., Kang, Y., Han, J.-H., Jang, K., Kim, C.-M. & Kim, I.S., Developments and Future Prospects of Reverse Electrodialysis for Salinity Gradient Power Generation: Influence of Ion Exchange Membranes and Electrodes, Desalination, 491, 114540, 2020. doi: 10.1016/j.desal.2020.114540.
Kotoka, F., Merino-Garcia, I. & Velizarov, S., Surface Modifications of Anion Exchange Membranes for an Improved Reverse Electrodialysis Process Performance: A Review, Membranes (Basel), 10, 160, 2020. doi: 10.3390/membranes10080160.
Hulme, A.M., Davey, C.J., Tyrrel, S., Pidou, M. & McAdam, E.J., Transitioning from Electrodialysis to Reverse Electrodialysis Stack Design for Energy Generation from High Concentration Salinity Gradients, Energy Convers Manag, 244, 114493, 2021. doi: 10.1016/j.enconman.2021.114493.
Ortiz-Martínez, V.M., Gómez-Coma, L., Tristán, C., Pérez, G., Fallanza, M., Ortiz, A., Ibañez, R. & Ortiz, I., A Comprehensive Study on the Effects of Operation Variables on Reverse Electrodialysis Performance, Desalination, 482, 114389, 2020. doi: 10.1016/j.desal.2020.114389.
Platek-Mielczarek, A., Lang, J., Töpperwien, F., Walde, D., Scherer, M., Taylor, D.P. & Schutzius, T.M., Engineering Electrode Rinse Solution Fluidics for Carbon-Based Reverse Electrodialysis Devices, ACS Appl Mater Interfaces, 15, pp. 48826-48837, 2023. doi: 10.1021/acsami.3c10680.
Jang, J., Kang, Y., Han, J.-H., Jang, K., Kim, C.-M. & Kim, I.S., Developments and Future Prospects of Reverse Electrodialysis for Salinity Gradient Power Generation: Influence of Ion Exchange Membranes and Electrodes, Desalination, 491, 114540, 2020. doi: 10.1016/j.desal.2020.114540.
Mehdizadeh, S., Kakihana, Y., Abo, T., Yuan, Q. & Higa, M., Power Generation Performance of a Pilot-Scale Reverse Electrodialysis Using Monovalent Selective Ion-Exchange Membranes, Membranes (Basel), 11, 27, 2021. doi: 10.3390/membranes11010027.
Simões, C., Vital, B., Sleutels, T., Saakes, M. & Brilman, W., Scaled-up Multistage Reverse Electrodialysis Pilot Study with Natural Waters, Chem Eng J, 450, 138412, 2022. doi: 10.1016/j.cej.2022.138412.
Loza, S., Loza, N., Kutenko, N., Smyshlyaev, N., Profiled Ion-Exchange Membranes for Reverse and Conventional Electrodialysis, Membranes (Basel), 12, 985, 2022. doi: 10.3390/membranes12100985.
Munsif, R., Zubair, M., Aziz, A. & Zafar, M.N., Industrial Air Emission Pollution: Potential Sources and Sustainable Mitigation, in: Viskup, R., (ed.), Environmental Emissions, IntechOpen, 2021. doi: 10.5772/intechopen.93104.
Siagian, U.W.R., Raksajati, A., Himma, N.F., Khoiruddin, K. & Wenten, I.G., Membrane-based Carbon Capture Technologies: Membrane Gas Separation vs. Membrane Contactor, J Nat Gas Sci Eng, 67, pp. 172–195, 2019. doi: 10.1016/j.jngse.2019.04.008.
Xia, Q., Does Green Technology Advancement and Renewable Electricity Standard Impact on Carbon Emissions in China: Role of Green Finance, Environ Sci Pollution Res, 30, pp. 6492-6505, 2023. doi: 10.1007/s11356-022-22517-8.
Aghabalayev, F. & Ahmad, M., Does Innovation in Ocean Energy Generations-related Technologies in G7 Countries Reduce Carbon Dioxide Emissions? Role of International Collaboration in Green Technology Development and Commercial and Monetary Policies, Environ Sci Pollution Res, 30, pp. 14545-14564, 2022. doi: 10.1007/s11356-022-23081-x.
Khattak, S.I. & Ahmad, M., The Cyclical Impact of Innovation in Green and Sustainable Technologies on Carbon Dioxide Emissions in OECD Economies, Environ Sci Pollution Res, 29, pp. 33809-33825, 2022. doi: 10.1007/s11356-022-18577-5.
Elghamry, R., Hassan, H. & Hawwash, A.A., A Parametric Study on the Impact of Integrating Solar Cell Panel at Building Envelope on Its Power, Energy Consumption, Comfort Conditions, and CO2 Emissions, J Clean Prod, 249,119374, 2020. doi: 10.1016/j.jclepro.2019.119374.
Long, Y., Chen, Y., Xu, C., Li, Z., Liu, Y. & Wang, H., The Role of Global Installed Wind Energy in Mitigating CO2 Emission and Temperature Rising, J Clean Prod, 423, 138778, 2023. doi: 10.1016/j.jclepro.2023.138778.
Mohsin, M., Orynbassarov, D., Anser, M.K. & Oskenbayev, Y., Does Hydropower Energy Help to Reduce CO2 Emissions in European Union Countries? Evidence from Quantile Estimation, Environ Dev, 45, 100794, 2023. doi: 10.1016/j.envdev.2022.100794.
Cai, Q., Qiu, X., Peng, L., Li, Q. & Zhang, Y., Significant Co-Benefits of Air Pollutant and CO2 Emission Reduction from Biomass Energy Utilization in Power Plants in China, Sci Total Environ, 887, 164116, 2023. doi: 10.1016/j.scitotenv.2023.164116.
Bai, Y., Lin, H., Abed, A.M., Fayed, M., Mahariq, I., Salah, B., Saleem, W. & Deifalla, A., An Innovative Biomass-Driven Energy Systems for Green Energy and Freshwater Production with Less CO2 Emission: Environmental and Technical Approaches, Chemosphere, 334, 139008, 2023. doi: 10.1016/j.chemosphere.2023.139008.
M. Umar, A.A. Awosusi, O.R. Adegboye, O.S. Ojekemi, Geothermal Energy and Carbon Emissions Nexus in Leading Geothermal-Consuming Nations: Evidence from Nonparametric Analysis, Energy & Environment, 0958305X2311539, 2023. doi: 10.1177/0958305X231153972.
Alsaleh, M., Yang, Z., Chen, T., Wang, X., Abdul-Rahim, A.S. & Mahmood, H., Moving Toward Environmental Sustainability: Assessing the Influence of Geothermal Power on Carbon Dioxide Emissions, Renew Energy, 202, pp. 880-893, 2023. doi: 10.1016/j.renene.2022.11.060.
Zhou, S., Cao, S. & Wang, S., Realisation of a Coastal Zero-Emission Office Building with the Support of Hybrid Ocean Thermal, Floating Photovoltaics, and Tidal Stream Generators, Energy Convers Manag, 253, 115135, 2022. doi: 10.1016/j.enconman.2021.115135.
Usman, O., Renewable Energy and CO2 Emissions in G7 Countries: Does the Level of Expenditure on Green Energy Technologies Matter?, Environmental Science and Pollution Research, 30, pp. 26050-26062, 2022. doi: 10.1007/s11356-022-23907-8.
Arellano-Prieto, Y., Chavez-Panduro, E., Salvo Rossi, P. & Finotti, F., Energy Storage Solutions for Offshore Applications, Energies (Basel), 15, 6153, 2022. doi: 10.3390/en15176153.
Child, M., Haukkala, T. & Breyer, C., The Role of Solar Photovoltaics and Energy Storage Solutions in a 100% Renewable Energy System for Finland in 2050, Sustainability 9, 1358, 2017. 10.3390/su9081358.
Talat, R., Muzammal, M., Qu, Q., Zhou, W., Najam-ul-Islam, M., Bamakan, S.M.H. & Qiu, J., A Decentralized System for Green Energy Distribution in a Smart Grid, Journal of Energy Engineering, 146, 04019036, 2020. doi: 10.1061/(ASCE)EY.1943-7897.0000623.
Gong, K., A Concept of Distributed Energy Management Systems with Fully Decentralized Primary Control Strategies for Microgrids, Technische Universität, 2018.
Wen, Y., Zhang, T., Wang, J., Pan, Z., Wang, T., Yamashita, H., Qian, X. & Zhao, Y., Electrochemical Reactors for Continuous Decentralized H 2 O 2 Production, Angewandte Chemie International Edition, 61(35), e202205972, 2022. doi: 10.1002/anie.202205972.
Ohlhorst, D., Germany’s Energy Transition Policy between National Targets and Decentralized Responsibilities, Journal of Integrative Environmental Sciences 12, pp. 303-322, 2015. doi: 10.1080/1943815X.2015.1125373.
Zhang, L., Ren, J. & Zhang, G., Optimal Dynamic Strategy for Emission Reduction and Operation Considering Hybrid Carbon Policy with Carbon Tax and Cap-And-Trade, Comput Ind Eng, 187,109820, 2024. doi: 10.1016/j.cie.2023.109820.
Lugo-Laguna, D., Arcos-Vargas, A. & Nuñez-Hernandez, F., A European Assessment of the Solar Energy Cost: Key Factors and Optimal Technology, Sustainability 13, 3238, 2021. doi: 10.3390/su13063238.
Wiser, R., Rand, J., Seel, J. Beiter, P. Baker, E., Lantz, E. & Gilman, P., Expert Elicitation Survey Predicts 37% to 49% Declines in Wind Energy Costs By 2050, Nat Energy, 6, pp. 555-565, 2021. doi: 10.1038/s41560-021-00810-z.
Kebede, A.A., Kalogiannis, T., Van Mierlo & Berecibar, J.M., A Comprehensive Review of Stationary Energy Storage Devices for Large Scale Renewable Energy Sources Grid Integration, Renewable and Sustainable Energy Reviews, 159, 112213, 2022. doi: 10.1016/j.rser.2022.112213.
Sweeney, C., Bessa, R.J., Browell, J. & Pinson, P., The Future of Forecasting for Renewable Energy, WIREs Energy and Environment 9(2), e365, 2020. doi: 10.1002/wene.365.
Meenal, R., Binu, D., Ramya, K.C., Michael, P.A., Kumar, K.V., Rajasekaran, E. & Sangeetha, B., Weather Forecasting for Renewable Energy System: A Review, Archives of Computational Methods in Engineering, 29, pp.2875-2891, 2022. doi: 10.1007/s11831-021-09695-3.
Khan, S.A.R., Yu, Z., Belhadi, A. & Mardani, A., Investigating the Effects of Renewable Energy on International Trade and Environmental Quality, J Environ Manage, 272, 111089, 2020. doi: 10.1016/j.jenvman.2020.111089.
Khan, I., Zakari, A., Zhang, J., Dagar, V. & Singh, S., A Study of Trilemma Energy Balance, Clean Energy Transitions, and Economic Expansion in the Midst of Environmental Sustainability: New Insights from Three Trilemma Leadership, Energy, 248, 123619, 2022. doi: 10.1016/j.energy.2022.123619.
Østergaard, P.A., Duic, N., Noorollahi, Y., Mikulcic, H. & Kalogirou, S., Sustainable Development Using Renewable Energy Technology, Renew Energy, 146, pp. 2430-2437, 2020. doi: 10.1016/j.renene.2019.08.094.
Lu, Y., Khan, Z.A., Alvarez-Alvarado, M.S., Zhang, Y., Huang, Z. & Imran, M., A Critical Review of Sustainable Energy Policies for the Promotion of Renewable Energy Sources, Sustainability, 12, 5078, 2020. doi: 10.3390/su12125078.
Langer, J., Quist, J. & Blok K., Review of Renewable Energy Potentials in Indonesia and Their Contribution to a 100% Renewable Electricity System, Energies (Basel), 14, 7033, 2021. doi: 10.3390/en14217033.
Reyseliani, N. & Purwanto, W.W., Pathway Towards 100% Renewable Energy in Indonesia Power System by 2050, Renew Energy, 176, pp. 305-321, 2021. doi: 10.1016/j.renene.2021.05.118.
Yudha, S., Tjahjono, B. & Longhurst, P., Unearthing the Dynamics of Indonesia’s Geothermal Energy Development, Energies (Basel), 15, 5009, 2022. doi: 10.3390/en15145009.
Sambodo, M.T., Yuliana, C.I., Hidayat, S., Novandra, R., Handoyo, F.W., Farandy, A.R., Inayah, I. & Yuniarti, P.I., Breaking Barriers to Low-Carbon Development in Indonesia: Deployment of Renewable Energy, Heliyon, 8, e09304, 2022. doi: 10.1016/j.heliyon.2022.e09304.
Santika, W.G., Urmee, T., Simsek, Y., Bahri, P.A. & Anisuzzaman, M., An Assessment of Energy Policy Impacts on Achieving Sustainable Development Goal 7 in Indonesia, Energy for Sustainable Development, 59, pp. 33-48, 2020. doi: 10.1016/j.esd.2020.08.011.
Blum, N.U., Wakeling, R.S. & Schmidt, T.S., Rural Electrification through Village Grids—Assessing the Cost Competitiveness of Isolated Renewable Energy Technologies in Indonesia, Renewable and Sustainable Energy Reviews, 22, pp. 482-496, 2013. doi: 10.1016/j.rser.2013.01.049.
You, S., Tong, H., Armin-Hoiland, J., Tong, Y.W. & Wang, C.-H., Techno-Economic and Greenhouse Gas Savings Assessment of Decentralized Biomass Gasification for Electrifying the Rural Areas of Indonesia, Appl Energy, 208, pp. 495-510, 2017. doi: 10.1016/j.apenergy.2017.10.001.
Pambudi, N.A., Geothermal Power Generation in Indonesia, A Country within The Ring of Fire: Current Status, Future Development and Policy, Renewable and Sustainable Energy Reviews, 81, pp. 2893-2901, 2018. doi: 10.1016/j.rser.2017.06.096.
Nasruddin, Alhamid, M.I., Daud, Y., Surachman, A., Sugiyono, A., Aditya, H.B. & Mahlia, T.M.I., Potential of Geothermal Energy For Electricity Generation In Indonesia: A Review, Renewable and Sustainable Energy Reviews 53, pp. 733-740, 2016. doi: 10.1016/j.rser.2015.09.032.
Pambudi, N.A. & Ulfa, D.K., The Geothermal Energy Landscape in Indonesia: A Comprehensive 2023 Update on Power Generation, Policies, Risks, Phase and the Role of Education, Renewable and Sustainable Energy Reviews 189, 114008, 2024. doi: 10.1016/j.rser.2023.114008.
Ministry of Energy and Mineral Resources, Republic of Indonesia, The Performance Report Ministry of Energy and Mineral Resources, Republic of Indonesia 2022, Jakarta, 2023. Accessed from https://www.esdm.go.id/id/publikasi/laporan-kinerja (February 12, 2024). (Text in Indonesian)
Ministry of Energy and Mineral Resources, Republic of Indonesia, New Renewable Energy Potential of Indonesia, 2008. Accessed from https://www.esdm.go.id/id/media-center/arsip-berita/potensi-energi-baru-terbarukan-ebt-indonesia (February 10, 2024). (Text in Indonesian)
Copyright (c) 2024 Journal of Engineering and Technological Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.